
Software Practitioner Perspectives on Merge
Conflicts and Resolutions

Shane McKee⇤, Nicholas Nelson⇤, Anita Sarma, and Danny Dig
Oregon State University, Corvallis, OR

{mckeesh, nelsonni, anita.sarma, digd}@oregonstate.edu

Abstract—Merge conflicts occur when software practitioners
need to work in parallel and are inevitable in software de-
velopment. Tool builders and researchers have focused on the
prevention and resolution of merge conflicts, but there is little
empirical knowledge about how practitioners actually approach
and perform merge conflict resolution. Without such knowledge,
tool builders might be building on wrong assumptions and
researchers might miss opportunities for improving the state of
the art.

We conducted semi-structured interviews of 10 software prac-
titioners across 7 organizations, including both open-source
and commercial projects. We identify the key concepts and
perceptions from practitioners, which we then validated via a
survey of 162 additional practitioners.

We find that practitioners are directly impacted by their
perception of the complexity of the conflicting code, and may
alter the timeline in which to resolve these conflicts, as well as
the methods employed for conflict resolution based upon that
initial perception. Practitioners’ perceptions alter the impact of
tools and processes that have been designed to preemptively
and efficiently resolve merge conflicts. Understanding whether
practitioners will react according to standard use cases is impor-
tant when creating human-oriented tools to support development
processes.

I. INTRODUCTION

Collaborative development is essential for the success of
large projects [1], and is enabled by version control systems.
In Git and other version control systems, practitioners work on
their changes in seclusion, and periodically synchronize them
by merging with the main line of development. Although a
large number of commits cleanly merge, parallel changes can
overlap, leading to merge conflicts. Kasi et al. [2] and Brun et
al. [3], in their studies of several open source projects, found
that merge conflicts occur in approximately 19% of all merges.

Resolving merge conflicts is nontrivial, especially when
changes diverge significantly, making their synchronization
difficult. The resolution process can be tedious and can cause
delays as practitioners figure out how to approach and resolve
conflicts [2]. Poorly-performed merge conflict resolutions have
been known to cause integration errors [4], workflow disrup-
tions, and jeopardize project efficiency and timelines [5].

Practitioners are aware of the merge-resolution “pains” and
follow different informal processes to avoid having to resolve
conflicts; e.g. sending out emails to the rest of the team,
performing partial commits, or racing to finish changes [6][7].

⇤ First and second author contributed equally to this work.

Unfortunately, these practices cause changes to diverge more
and makes merge conflict resolution even harder [3].

Past work has examined different mechanisms for proactive
conflict detection [3][8][9], proposed tools for resolving merge
conflicts [10][11], and discussed advantages of syntax- and
semantic-aware merges [12][13]. However, there are several
key questions that remain unanswered: How do practition-
ers actually approach merge conflicts? How do practitioners
perceive the difficulty of a merge conflict resolution? Do the
current tools support practitioners’ conflict resolution needs?
Without such knowledge, tool builders might be building on
wrong assumptions and researchers might miss opportunities
for improving the state of the art.

To answer the above key questions, we talked directly to
practitioners, which is crucial to understanding problems in
context [14]–[17]. We interviewed 10 software practitioners
from 7 organizations about their experiences and perceptions
of merge conflicts in the software development process. Our
participants had a median of 5 years of software development
experience, and work on a mix of both small-scale projects
(<10 contributors) and large-scale projects (>1000 contribu-
tors). These interviews helped us understand how practitioners
approach merge conflicts, and their unmet needs.

To triangulate our findings and provide a broader under-
standing of practitioners’ perceptions of merge conflicts and
their difficulty, we deployed a survey to a larger population
of software practitioners. The survey sampled 162 participants,
spanning both open source and commercial projects. 74.2% of
our participants had 6 or more years of software development
experience, and reported that they face merge conflicts a few
times a week.

To understand the effects and implications of software
practitioner perceptions, we answer the following research
questions:

• RQ1: How do software practitioners approach merge
conflicts?

• RQ2: What unmet needs impact the difficulty of a merge
conflict resolution?

• RQ3: How well do tools meet practitioner needs for
merge conflicts?

We found that practitioners, when initially assessing a merge
conflict, focus on the code complexity of the conflicting lines
and their own knowledge in the area of the conflict as the top
two factors when estimating the difficulty of a conflict. These

1

Received IEEE TCSE Distinguished Paper Award at ICMSE’17



concerns cause practitioners to alter their resolution strategy,
and in some cases delay resolution.

After understanding the merge conflict, practitioners must
resolve the conflict in order to return to normal development.
We found that the key challenges that practitioners face when
resolving conflicts is understanding the conflicting code, their
knowledge in the area of code conflict, and having enough
meta information about the conflicting code (who made the
change, why, etc).

We found that development tools struggle to address practi-
tioners’ perceptions that increases in merge conflict complexity
have a greater impact on the conflict difficulty than increases in
size. This could partially be alleviated by focusing on the tool
improvements most desired by practitioners: better usability,
better information filtering, and better history exploration.

This paper makes the following contributions:
• We conduct exploratory semi-structured interviews with

10 software practitioners, then confirm these findings with
a survey of 162 practitioners from around the world.

• We provide empirically-derived rankings of merge con-
flict difficulties based on practitioners’ perceptions.

• We expose disparities between practitioners’ merge con-
flict needs and development toolsets.

II. METHODOLOGY

We use mixed methods to first explore the topic of practi-
tioners’ difficulties when encountering merge conflicts through
a set of exploratory interviews, and then validate our find-
ings through a survey of practitioners, as per guidelines by
Easterbrook et al. [18]. Mixed methods allow us to analyze
both qualitative and quantitative data to get both an individual
and a population-wide perspective of software practitioners.

We codified the interview transcripts into a taxonomy of
barriers, constraints, and concerns following established guide-
lines [19]–[21]. We then created a survey to get a broader
perspective on how software practitioners approach merge
conflicts, using the vocabulary generated from the interviews
to create the survey questions.

A. Terminology
For this work, we define merge conflict as a scenario in

which two copies of the same codebase diverge and cannot be
automatically merged, thus requiring human intervention to
resolve. While we recognize that other types of conflicts exist
in software projects (i.e. social conflicts or semantic conflicts,
such as build or test failure), we focused our interviews and
survey on code-related merge conflicts.

B. Interviews
We conducted semi-structured interviews with software

practitioners to understand their concerns when facing merge
conflicts and the factors that impact merge conflict difficulty.

We selected interview participants from top contributors
to open-source projects, and from industry contacts using
snowball sampling [22] to reach a larger sample size. Each
participant was asked to identify additional practitioners for

recruitment to our study. We interviewed ten software practi-
tioners from seven different organizations spanning six differ-
ent industries: Semiconductor Manufacturing (3 participants),
Healthcare Software (2), Academia (2), Business Software
(1), IT Services (1), and Sports & Wellness Technology (1).
Each participant was asked to describe their role within their
organization, resulting in five roles with multiple responses for
Software Engineer / Developer. Table I provides additional
demographics data, including project sizes and whether the
participant primarily focuses on open- or closed-source soft-
ware development.

TABLE I: Interview Participant Demographic

Ptc.i Exp.ii Role Project
Source

Project
Contrib.iii

P1 18 yrs. Sr. Software Developer Open 1700
P2 6 yrs. Software Engineer Open 1700
P3 3 yrs. Software Engineer Open 1700
P4 10 yrs. Software Developer Open <10
P5 3 yrs. Infrastructure Engineer Closed <10
P6 5 yrs. Software Developer Closed <10
P7 5 yrs. Software Engineer Open 200
P8 25 yrs. Director Open 600
P9 8 yrs. Software Developer Open 600

P10 2 yrs. Software Developer Open <5

i Ptc. = Participant ii Exp. = Years of Software Development Experience
iii Project Contrib. = Approximate number of contributors (between March

2016-March 2017)

Each interview lasted between 30 to 60 minutes. Participants
were offered US$50 in either cash, gift card, or a donation to
a charity of their choice.

At the beginning of the interview we gave participants a
short explanation of the research goals, our definition of merge
conflicts, and collected demographics data. We then asked
participants about the roles that they play in their project, their
experience working in team settings, questions about merge
conflicts, the process of conflict resolution, and the difficulties
that they faced in conflict resolution.

We formulated the interview questions about merge conflicts
in order to understand how practitioners perceived and how
they approached merge conflicts. The following is an example
of some of the questions we asked in the interview. The full
set of questions can be found in our companion site [23].

• Can you describe a merge conflict, or a set of conflicts,
that you would consider to be the typical case?

• Do you have any particularly memorable merge conflict
resolutions that you can recall?

• Have you had some code structures, design patterns,
coding styles, etc., that you would consider a “usual
suspect” in a conflict?

• What kind of measures would you take to minimize the
amount of defects that you introduce?

The semi-structured interview format allowed participants
to provide us with unanticipated information [24]. Further,

2



we allowed open-ended discussion about merge conflicts in
general at the end of the interview, which allowed participants
to share ideas and topics that they found particularly impor-
tant. We continued interviewing participants until we reached
saturation in the answers [25].

Analysis: Interviews were audio-taped and transcribed.
The first two authors unitized [26] the interview transcripts
into cards that each contained a single logically consistent
statement. To organize these cards we employed card sorting,
a collaborative technique of exploring how people think about
a certain topic [27][28], which allows key concepts and
associations to be identified through an open sorting method
that iteratively develops categories during the process.

We performed two iterations of the open card sorting
process. In the first iteration, we developed a standardized
coding scheme and improved it to an acceptable point by
negotiated agreement, which was reached when no further
thematic categories could be created and agreed upon by both
coders [29][30]. The coding scheme dictated that sentences
must be consecutive and topically related to be grouped
into a single card. Logically connected statements that were
separated by other lines were considered to be separate cards,
as a conservative measure to preserve context within each card.

In the second iteration, the first two authors sorted cards
according to our coding scheme and discussed the resulting
taxonomies until consensus was reached. Based upon our
research questions, we grouped the resulting categories as fol-
lows: the factors that impact how practitioners approach merge
conflicts (Section III-A), the difficulties that practitioners face
when resolving conflicts (Section III-B), and the impact of
development tools on the resolution process (Section III-C).

TABLE II: Survey Participant Rolesi

Soft
. Dev

elo
pe

rs

Sys.
Arch

ite
cts

Dev
Ops

Proj
ect

Man
ag

ers

Proj
ect

Main
tai

ne
rs

Sys.
Adm

ins

Othe
r

Software Developers 154
System Architects 53 54

DevOps 51 34 53
Project Managers 44 29 20 44

Project Maintainers 39 21 24 22 40
Systems Administrators 22 16 15 14 12 23

Other 8 4 4 3 1 2 11

i Survey respondents were allowed to select multiple roles. Each
entry represents the number of respondents that selected both of the
roles indicated for the column and row. 62 out of 162 respondents
(38%) selected three or more roles.

C. Survey
We conducted a 50-question survey of software develop-

ment practitioners in order to examine the themes and cate-
gories found in the interviews. We sought to understand which
factors impact practitioners the most when they encounter and
resolve merge conflicts. The survey was conducted online and

anonymity was guaranteed in order to elicit honest responses
from participants. We developed questions to confirm, extend,
and broaden the results from the interviews.

We recruited survey participants from contributor lists on
popular open-source repositories on GitHub1, advertised on
social networking sites (Facebook2 and Reddit3), and by
directly contacting software practitioners via email. Due to the
nature of social media and mailing lists, we cannot compute
a response rate. However, our participants spanned different
organization structures and geographical locations, giving us
generalizability of results. The survey was available for 56
days and we received 162 survey responses, but individual
parts of the survey have varying response rates and are
reported where appropriate in Section III.

Survey participants were primarily male (91.9% overall).
Participants were given six different software roles to se-
lect, and in many cases, participants considered themselves
to be fulfilling multiple roles. Table II provides a pairwise
breakdown of participants’ role selections, with a majority
of respondents considering themselves to be Software Engi-
neer/Developer (95.1% overall). Survey participants indicated
a median software development experience of 6-10 years
(36.4% overall), and worked on project sizes ranging from
2 to more than 51 developers (the median was 2-5 developers,
constituting 48.8% of all responses).

The survey was divided into four categories, with each
category containing 5-7 questions (see [23] for questions).
First, we elicited background information about demographics,
roles, and experience. Second, we asked questions related to
difficulties that practitioners experience when encountering
merge conflicts. Third, we asked questions related to conflict
resolution and the factors that affect practitioners. Finally
we asked questions about the tools and tool features that
practitioners use when working with merge conflicts. Ques-
tions were presented either as 5-point Likert-type scales (with
no pre-selected answers) or open-ended text forms to gather
additional insights.

Analysis: We evaluated the distribution of survey answers
for each Likert-type question by analyzing across demographic
categories. Where answers differed across a demographic
category, we note the difference and provide further discussion
of these results in Section III.

We used Likert-type questions to measure the extent to
which participants agreed with a particular statement. This
means that lower mean and median values indicate less
agreement with the statement in a particular question. We use
this design to validate both the degree of agreement to the
interview results, as well as the existence of individual factors.

III. RESULTS

A. RQ1: How do practitioners approach merge conflicts?
To understand the perspective of practitioners when encoun-

tering a merge conflict, we asked interview participants to
reflect on situations when they initially face a merge conflict:

1 github.com 2 facebook.com 3 reddit.com

3



TABLE III: Factors of Merge Conflict Difficulty from Survey

Factor Description 1 2 3 4 5 Mean Median

F1 Complexity of conflicting lines of code 5 29 38 56 34 3.52 4
F2 Your knowledge/expertise in area of conflicting code 5 23 50 54 30 3.50 4
F3 Complexity of the files with conflicts 8 34 49 51 18 3.23 3
F4 Number of conflicting lines of code 2 40 64 45 11 3.14 3
F5 Time to resolve a conflict 14 56 51 25 15 2.82 3
F6 Atomicity of changesets in the conflict 20 48 51 29 13 2.80 3
F7 Dependencies of conflicting code on other components 20 56 39 33 14 2.78 3
F8 Number of files in the conflict 10 69 50 26 6 2.68 3
F9 Non-functional changes (whitespace, renaming, etc.) 47 63 31 15 4 2.16 2

what kind of information do they seek, how do they approach
the resolution of the conflict, and what tools they use.

We identified nine factors (from card sorting) that practi-
tioners consider when approaching a conflict and attempting
to determine its difficulty (see Table III). We asked survey
participants to rate how each of these nine factors affected their
perceptions of difficulty when approaching a merge conflict.

We received 162 responses and present the aggregated
results in Table III; ranked according to the mean score for
each factor. Here, we discuss in detail the top 4 factors with
a mean score greater than 3.00. These factors can be grouped
into themes of technical aspects and expertise, and our results
are presented according to these groups.

Technical Aspects: Two of the top four factors refer to
perceptions about the complexity of merge conflicts (F1, F3),
with the third factor being number of conflicting lines (F4),
which can be construed as a specific metric of complexity
of the conflict. While practitioners mentioned complexity
of the lines of code and the file, none mentioned using
metrics, such as cyclomatic complexity [31][32] or Function
Point Analysis [33][34]. Instead, practitioners made educated
guesses on the complexity of the code based on their own
experience of either writing the code, or having worked with
it. Some of the simple to compute metrics, such as number
of conflicting lines of code (F4), number of files involved
(F8), atomicity of changesets (F6), and the time they thought
it would take to resolve the conflict (F5) were mentioned.
The only factor where static analysis tools can help was in
identifying the dependencies of the conflicting code (F7). This
indicates that understanding the complexity of the conflicting
code is important, but practitioners do not use the metrics that
have been proposed by research. While some of the simple
proxies for complexity are used, practitioners primarily rely
on their own “judgement” of the complexity of the conflict.

This perception of the conflict complexity can affect
whether a practitioner resolves the conflict immediately (when
small), or whether they should wait to examine the conflict
when further resources are available; P8 commented:

“Small is always easy. A 1-line merge conflict is always
easier to resolve than a 400-line merge conflict, and can
be done now.”

If a merge conflict is perceived to be large or complex,

a practitioner may decide to forgo attempting to resolve it
through code manipulation and choose to revert the changes
instead [35]. This “nuclear option” requires practitioners to
disrupt the development flow, set aside their current develop-
ment work, and potentially remove “good” code that was not
part of the conflict in order to return to a non-conflicting state.
In the interview, P1 describes this process as:

“If you have many conflicts involved, many commits in
the conflict...throw one of the branches away. You cannot
combine tens of commits conflicting...it’s not sane!”
Further, when integrators are preparing code for production

environments they prioritize merge conflicts for code review
based upon the perceived difficulty of resolving the affected
code. We find that these decisions rely on human judge-
ment factors as much as they rely on data-driven metrics.
Practitioners may not have the time to compute project-
wide complexity metrics, such as those proposed in literature.
Therefore, we need metrics that can be easily calculated by
“lay practitioners” as they face a conflict.

Expertise: Our findings show that expertise in the area of
conflicting code is one of the top factors in determining the
difficulty of a merge conflict (F2). This reiterates the fact that
practitioners rely on their own knowledge about the conflicting
code base when approaching a conflict.

Our results indicate that when practitioners feel they don’t
have the expertise in the conflicting code base, they consider
the conflict difficult to merge and seek out more information
or assistance from others. P5 illustrated this need for expertise
when describing his workflow:

“A lot of what I work on is in my own little area...I know
what to do. . . But in [unfamiliar part of code], then I’ll
get someone else to resolve the merge conflict for me. It’s
someone else’s code, and I don’t want to screw it up.”
Our findings confirm the need for tools that identify ap-

propriate experts [36] and encourage further research into
selection of knowledgeable practitioners for merge conflict
resolution.

B. RQ2: What unmet needs impact the difficulty of a conflict
resolution?

There can often be gaps in how practitioners perceive the
difficulty of merge conflicts and the actual hurdles that they

4



TABLE IV: Practitioners’ Needs for Merge Conflict Resolutions from Survey

Need Description 1 2 3 4 5 Mean Median

N1 How easy is it to understand the code involved in the merge conflict 0 14 25 65 37 3.89 4
N2 Your expertise in the area of code with the merge conflict 1 17 38 49 36 3.72 4
N3 The amount of information you have about the conflicting code 2 21 38 48 32 3.62 4
N4 How well tools present information in an understandable way 4 24 47 32 34 3.48 3
N5 Changing assumptions within the code 8 27 45 36 25 3.30 3
N6 Complexity of the project structure 6 38 39 41 17 3.18 3
N7 Trustworthiness of tools 17 29 39 32 34 3.12 3
N8 Informativeness of commit messages 18 32 30 44 17 3.07 3
N9 Project culture 13 37 43 27 21 3.04 3
N10 Tool support for examining development history 16 40 31 32 22 3.03 3

face when resolving these conflicts. These gaps can then in
turn affect how well practitioners can resolve the conflict.

We, therefore, asked our interview participants open-ended
questions about their experiences in resolving the most recent
past conflicts, especially their recollection of what made the
resolution difficult. Their responses indicated that there are
several unmet needs. We identified ten needs (see Table IV),
which range from needs about the ability to understand the
code, their expertise, and existing tool support.

Using results from the interview, we asked survey partici-
pants to rate how much each of the ten needs affected their
ability to resolve merge conflicts. We received 141 responses
using a 5-point Likert-type scale indicating the degree of effect
on resolution difficulty (1 being Not at all, 3 being A moderate
amount, and 5 being A great deal). Results of the survey are
presented in Table IV.

All the unmet needs have a mean score of at least 3.03
on the 5-point Likert-type scale, implying that all of them
mattered at least a moderate amount. We present and discuss
in detail the top four unmet needs, plus additional observations
regarding the other six unmet needs. As with the factors in the
previous section, all these needs also relate to technical aspects
(e.g., understanding the conflicting code) and their expertise
in resolving conflicts.

Technical Aspects: Three needs among the top four relate
to technical aspects of merge conflict resolution. The under-
standability of conflicting code (N1) is ranked as the most
important need, with both contextual information about the
conflict (N3) and the way in which tools present relevant
information (N4) ranking in the top four.

Data from version control systems is used by practitioners to
identify the evolution of the code [37], however, it is not easily
available and requires a context switch from the code editor to
the version control system [35]. Moreover, these changes are
often processed in isolation, especially when there are many
changes (conflicts) to process. Such decomposition of overall
conflicting changes into smaller “chunks” is needed to be able
to manage the complexity of the resolution process; however,
this occludes viewing the changes and their impact in a
holistic manner. Often practitioners deal with the decomposed
(smaller) changes, hoping that they will all together work out.

For example, P1 compared the resolution hurdles between
two conflicts, where one was simple, and the other spanned
multiple files and complex blocks of code.

“You focus on understanding the small change, not the
big one. It’s easier to understand... get the small change
to go with the flow of the bigger change.”

Another challenge when viewing changes in isolation, is
the fact that practitioners may miss the impact of the changes
made as part of the resolution to the rest of the code base.
Identifying the impact of changes on the rest of the code base
has been repeatedly found to be a problem in collaborative
development, as found by deSouza and Redmiles [38] and
more recently by Guzzi et al. [35]. The top unmet needs in
our study too revolved around the challenges that practitioners
face in how much information they had about the conflicting
code (N3), and the difficulty in finding the needed information
from current tools and practices (N3, N4, N8, N10). This indi-
cates that despite advances in supporting parallel development
practices, the right information needed to resolve conflicts is
still not easily available to practitioners.

Conflict resolution can sometime lead to defects in the code
base. This can arise because of several reasons. For example
the rationale of the two conflicting changes might be unclear
and the merge might cause unintentional problems down the
line. Or the resolved changes might not follow rigorous code
review and testing to which the original changes were subject
to. Therefore, even when the practitioner understands the
particular conflicting code, they may still need additional meta
information about the rationale of changes and idea of future
feature implementation. This is especially true in situations
where the code base is old, and such information not readily
available. During our interview, P7 commented:

“It’s harder to merge code when you’re merging in some
legacy code... But if you’re a young team, and everybody
who wrote the code is still a part of the team, it’s easier.”

Expertise: Knowledge is a key component of practitioner’s
needs when resolving merge conflicts, but along with that
general knowledge is a need for expertise in the specific areas
of code involved in a conflict. Practitioners recognize this need
as having a sizable effect on their ability to resolve a merge

5



TABLE V: Improvements for Practitioner Toolsets from Survey

Improvement Description 1 2 3 4 5 Mean Median

I1 Better usability 6 17 32 48 16 3.43 4
I2 Better ways of filtering out less relevant information 8 15 32 48 16 3.41 4
I3 Better ways of exploring project history 7 21 36 39 16 3.30 3
I4 Better graphical presentation of information 13 26 26 37 16 3.14 3
I5 Better transparency in tool functionality/operations 16 36 24 40 3 2.82 3
I6 Better terminology that is more consistent with my other tools 23 41 32 15 8 2.53 2

conflict, and selected expertise in the area of conflicting code
(N2) as the second most important need.

Examining code artifacts, reviewing change history, and
reading documentation help with understanding the code when
they are present and well-maintained. However, locating and
maintaining these supporting documents is not always pos-
sible. In fact, Forward et al. [39] conducted a survey of
48 software practitioners and found that 68% either agreed
or strongly agreed that documentation is always outdated.
When these gaps arise, practitioners compensate by consulting
experts in the area of conflicting code instead.

This result aligns with the goals of the TIPMerge tool [36],
which seeks to locate experts that are best suited to resolve
conflicts in a particular area of code. However, TIPMerge, as
well as other recommendation tools are not being used by real-
world practitioners, as evidenced by the lack of such tools in
the list of top 10 merge tools (see Table VI). The reason for this
lack of research tools adoption requires further investigation.

Another surprising fact was that while the informative
nature of commit messages (N8) and project culture (N9) were
mentioned, they were not as highly ranked. We had expected
them to be higher based on prior work [40]–[43]. We found
no statistical differences between commercial or open source
projects, including when accounting for experience levels. Our
results indicate that team practices, including writing commit
messages may have matured enough, such that these factors
are no longer considered critical in our sample set.

Open-Source vs. Closed-Source Needs: It is interesting to
note that for needs N1-N8 there was no statistical difference
between practitioners focused on open-source and those fo-
cused on closed-source development when it comes to their
conflict resolution needs. We found that practitioners who
focus on open-source software development consider tool
support for examining development history (N10) to be the
3rd highest unmet need (mean: 3.60). Whereas, practitioners
who focus on closed-source software development consider it
to be the least impactful unmet need (mean: 2.86).

This was also true in our interviews, with P8 stating:
“I’m often dealing with code other people wrote. No-

body can review every pull request. So now I have to go
back and do some archaeology to find out what’s going
on. Code is much easier to write than read.”

This result suggests that history exploration in open-source
projects is a more difficult task due to the lack of upfront
planning and large number of volunteering contributors.

C. RQ3: How well do tools meet practitioner needs in resolv-
ing merge conflicts?

Development tools need to be easy to use and provide
contextualized, pertinent information in a manner that is easy
to understand. To investigate how well current tools satisfy the
needs of practitioners, we asked interview participants open-
ended questions about how they resolve merge conflicts. We
also ask about improvements that would be most valuable to
them.

Our results indicate that practitioners use a wide range of
tools, with many directly using the Git command line interface.
Our interview participants mentioned six different dimensions
along which they would like improvements to tool support
(see Table V).

We framed the survey questions to validate the improvement
needs expressed in our interviews, and ranked those six needs
according to mean score. Table V presents the needs from the
survey responses ordered by their mean scores. We received
119 responses using a 5-point Likert-type scale to indicate
the usefulness of each type of tool improvement (1 being Not
Useful, 3 being Moderately Useful, and 5 being Essential).

In addition, we also asked participants which tools they use
during conflict resolution. We identified 105 different tools
from the 115 responses. Some mentioned generic responses
such as “ text editor”, for which we create a separate cate-
gory. Table VI lists the top 10 most common tools used by
participants to resolve merge conflicts.

In examining the list of these tools, we note that prac-
titioners most often use basic tools (e.g. Git, Vim/vi, or a
Text Editor) to handle merge conflicts instead of employing
specialized tools or plugins to modern IDEs. In this list, there
is only one IDE (Eclipse), and three diff/merge toolsets (Git
Diff, KDiff3, and Meld). This indicates that practitioners are
currently not leveraging the functionalities provided by many
research prototypes (e.g., Palantir [8], Crystal [3]) that are
specifically designed to facilitate proactive conflict detection,
since they are built as plug-ins to modern IDEs.

We next discuss the top four improvements rated by survey
respondents. These are the responses that have a mean value
higher than 3.00.

Better Usability: Usability is an important factor that
determines whether a toolset supports or hinders the prac-
titioner’s workflow. Our survey results indicate that better
usability (I1) is the most desired improvement of toolsets
used for conflict resolution. While usability of a particular

6



TABLE VI: Survey Participant Merge Toolsets (Top 10)

Tool # Participants Description

Git 37 Version Control System
Vim/vi 17 Text Editor

Text Editor (unspecified) 14 Text Editor
Git Diff 11 Diffing Tool
GitHub 11 Website
Eclipse 10 IDE
KDiff3 9 Diff & Merge

Meld 8 Diff & Merge
SourceTree 8 Git/Hg Desktop Client

Sublime Text 7 Text Editor

tool is important, the usability concerns become even more
pertinent when they span multiple tools that are similar and
must operate in sync with each other. Survey results indicate
that participants use an average of 2.5 tools, and as many as 7
tools, to resolve merge conflicts. For instance, in our interview
P1 demonstrated how he typically resolved a merge conflict
by using four different tools and said:

“I have to jump around between tools and copy and paste
version numbers...this is why integration matters.”

Switching across multiple tools while resolving a conflict
is disruptive and comes at a cost. Psychology studies [44][45]
have shown that task switching reduces performance and
causes mental fatigue. Gerald Weinberg highlighted that con-
text switching arising from toolset fragmentation is a big
problem in engineering teams [46].

Better Exploration of Project History: Practitioners have
been known to use historical data to understand code evolution
and development processes [37]. Version control and bug
tracking systems contain a huge amount of meta-information
about the evolution of code and development processes. How-
ever, it is not easy to find the right bit of information in
these large systems. Currently, there is insufficient support for
performing detailed analysis of how a code snippet evolved
over time and why. Better ways of exploring the project history
(I3) was one of the top requested improvements in our survey.
As P1 mentioned in the interview:

“Give me a way to explore the history. To drill down, to
go back up, you know? To resurface and understand what
happened.”

Currently, when performing any complex analysis it is easier
to write stand alone scripts to extract the information. During
the interview, P1 mentioned that he has written several scripts
to locate particular historical commits that relate to a current
merge conflict. Similarly, P9 described a tool, git-diff,
that was developed by their team to add additional difference
analysis functionality across branches:

“git-diff will just do the diff based on the SHAs... we’re
adding metadata... It also hooks into GitHub labels to do
some more advanced heuristics.”

While writing these scripts allows extraction of relevant data
contextualized to the need, it also leads to a proliferation of
multiple scripts that are written by individual practitioners and
need to be maintained or integrated. This further adds to the
problem of context-switching when practitioners must switch
between multiple tools, and execute multiple scripts.

We are not the first to recognize the gap in tool support
provided for analyzing development history among practition-
ers [37], [47]–[49]. It appears that practical applications of
history exploration are still beyond the reach of practitioners.
One of the reasons for this might be the simple set of text
editors, and toolsets, that our study participants seem to prefer.

Better Filtering of Less-Relevant Information: Tools that
routinely handle large or complex datasets require filtering in
order to efficiently locate desired pieces of information. For
example, when there are several commits in a pull request and
multiple levels of code review at the line level. It is difficult
to extract the key issue in the pull request, which can get lost
in the sea of low level details. Similarly, if there are multiple
commits in a pull request or branch, it is hard to extract the
right information. Therefore, tools that provide filtering can
better assist practitioners in working with large amounts of
metadata associated with the changes. Better ways of filtering
out less relevant information (I2) was selected as the second
most important need; P1 explained:

“You want to extract the relevant commits. The ones
that actually clash...you want to zoom in on them and
understand just enough and don’t waste time.”

While improvements in history exploration (I3) will make
project metadata more accessible, improvements in filtering
for relevant metadata will allow practitioners to focus on the
relevant parts of the code impacted by the merge conflict.

Better Graphical Presentation of Information: The use-
fulness of information is helped or hindered by the way in
which it is presented to users. In our survey results, we found
that better graphical presentation of information (I4) was
ranked the fourth highest improvement needed (mean: 3.14).

In our interviews, several practitioners reported experienc-
ing issues with inconsistent terminology, inconsistent visual
metaphors (e.g. colors, notifications, etc.), and the organi-
zational layout of different development tools. The cost of
context switching in software development is well-known to
researchers [50]–[53], and our results indicate that switching
between different terminology and information presentation
styles can also be a problem. There is a need for tools that
share commonality in both terminology and presentation.

Tool Mistrust/Transparency: Most merge tools attempt to
resolve conflicts using a variety of algorithms, but revert
to manual resolution when these algorithms fail. Several
interview participants indicated that they mistrust merge tools
when they obscure the steps and rationale for particular
results when resolving merge conflicts. The opaque nature of
history exploration tools was also found to be a source of
practitioners’ overall mistrust of their toolsets. P4 commented:

7



Fig. 1: Effectiveness of practitioners’ toolsets in supporting perceived size and complexity of merge conflicts, split on
development experience. Bubble values indicate number of survey responses for effectiveness of a particular merge conflict
size and complexity, and bubble size indicates the number of responses for comparison purposes.

TABLE VII: Practitioners’ Trust in their Merging, History
Exploration, and Conflict Resolution Toolsi

Trust Level Response Count Response %

Completely 20 16.52
A lot 50 41.32

A moderate amount 41 33.88
A little 10 8.26

Not at all 0 0.00

i Survey respondents answered on a 5-point Likert-type scale indicat-
ing trust in their toolset (1 being Not at all and 5 being Completely).

“I’ve never trusted the merge tools or diff tools... Some-
times I’ll even manually go and do the merge myself rather
than use a tool. Just because I’ve had several times where
it’s a bad merge, and I broke some code.”

Based upon this theme of mistrust, we asked survey par-
ticipants to rate the degree to which they trust their merging,
history exploration, and conflict resolution tools. We received
121 responses to this question, with a mean score of 3.66 plac-
ing the most common responses between a moderate amount
and a lot of trust (Table VII). Assuming that responses of a
moderate amount, a little, or not at all indicate some degree
of mistrust, we find that 42.15% of practitioners experience
some gap in toolset trust.

However, the severity of toolset mistrust is not as significant
as our interview results suggested. Only 8.26% of practitioners
indicated that they trust their toolset a little or not at all (10 out
of 121 responses). As the results of the survey were counter
to our interview results, we looked further. We found that: (1)
participants reported on the trust levels of the tools that they
regularly use, and (2) a large number of participants reported
that they had discontinued toolsets when they ran into errors.
This indicates that if participants had reported their trust level
of these discontinued tools the results would have been lower.

Perceptions of Tool Effectiveness: The perceived size and
complexity of merge conflicts affect the way in which prac-
titioners plan, allocate, and enact resolutions. To understand
the degree to which these two factors impact practitioners’
perceptions about the effectiveness of their toolsets, we asked
survey participants to rate their toolset across four different
merge conflict archetypes: (A1) simple, small merge conflicts,
(A2) simple, large merge conflicts, (A3) complex, small merge
conflicts, and (A4) complex, large merge conflicts.

Since individual participants have different toolsets, and
consider different factors when determining the perceived size
and complexity of a merge conflict, we instructed participants
to rate their own toolset against these archetypes using their
notion of what constitutes a simple vs. complex and small vs.
large merge conflict.

Fig. 1 provides a visual illustration of the results of this

8



survey question. The four plots display the results for each
of the archetypes, with archetype (A1) in the top-left plot,
(A2) in bottom-left plot, (A3) in the top-right plot, and (A4)
in the bottom-right plot. Individual plots are composed of a
horizontal axis containing participants’ software development
experience, which we collect since experience can determine
the range of conflicts that they have faced and their percep-
tions. The vertical axis shows the range of possible responses
for the effectiveness of merge toolsets. The size and number
within each bubble represent the number of respondents with
a particular amount of software development experience that
rated their toolset at that specific effectiveness level.

For example, a practitioner with 6-10 years of experience
who indicates that her merge toolset is Extremely Effective
for small, simple merge conflicts would be represented in
the largest bubble (containing 19) in A1. She would also be
represented in the largest bubble (containing 13) in the bottom-
right plot (A4) if she indicated that her merge toolset was
Moderately effective for large, complex merge conflicts.

Observing the overall trends when moving between plots,
we find that practitioners perceive complexity of the conflict
to have a greater impact on the effectiveness of their merge
toolsets than the size of merge conflicts. Numerical analy-
sis confirms this when finding that the mean response for
archetype (A1) is 4.278 (where 5 is Extremely Effective and
1 is Not effective at all), (A2) is 3.782, (A3) is 3.347, and
(A4) is 2.783. The shift from small to large merge conflict
size (A1 to A2) results in a difference in mean responses of
0.496, whereas the shift from simple to complex merge conflict
complexity results in a difference in mean responses of 0.930.

These results suggest that merge tools are currently
equipped to handle increases in the size of merge conflicts,
but not as well equipped for increases in complexity. The
increasing amount of code being developed in distributed
environments means that scaling support in both dimensions
is necessary to accommodate practitioners’ needs.

IV. IMPLICATIONS

A. For Researchers
Our results inform future research by providing insights into

software practitioners’ perspectives during merge conflicts.
The top factors that impact the assessment of merge conflict

difficulty are primarily focused on program comprehension
(F1, F3, F4 from Table III). Program comprehension has
been an important research focus, with entire conferences
dedicated to it. Previous research has explored tool support and
visualizations to help comprehend programs, both small and
large. Our results indicate that practitioners still have unmet
needs along the following dimensions: (1) comprehending
code snippets in isolation, (2) understanding the code context
underlying multiple code snippets that are split across multiple
files, and commits, and (3) the ability to quickly comprehend
the complexity of these code snippets.

Practitioners indicate that their needs during merge conflict
resolutions center around the retrieval, organization, and pre-
sentation of relevant information (N1, N3, N4 from Table IV).

With the variety of meta-information available across different
toolsets, and the inconsistent use of terminology, there is a
need for standardization and best practices to be developed.
Standardization efforts would likely help to alleviate some of
the mistrust of merging tools that practitioners have expressed.
However, researchers should investigate the margin of errors
that are tolerated by practitioners to determine the context in
which practitioners discontinue use of tools.

Expertise is seen as both a significant factor that affects the
assessment of merge conflict difficulty (F2), and an important
need for practitioners to effectively resolve the conflict (N2).

Previous work has focused on recommending developers
best suited to perform a collaborative merge based on the
previous edits to conflicting files [54] or developers’ experi-
ence across branches and project history [36]. However, these
efforts have resulted in tools that require standalone installa-
tion and execution. Our results indicate that practitioners are
concerned about toolset fragmentation, and therefore adding
an additional tool might be counterproductive to the workflow
of most practitioners.

Finally, we find that practitioners need to quickly estimate
whether they can fix the conflict, and whether to resolve it
now or delay the resolution. This indicates that practitioners
need mechanisms to identify the skillsets required to complete
the conflict resolution task, by viewing the code fragments.
Research should investigate mechanisms to identify required
skillsets by using information retrieval or machine learning
techniques on the code fragment and past edits.

B. For Practitioners
Practitioners indicate that understanding code, having ap-

propriate information, and dealing with complex codesets are
key themes of difficulty when working with merge conflicts
(Sections III-A, III-B). Existing tool support can help with
some of these issues, but practitioners also need to educate
themselves on development processes that prevent and allevi-
ate the severity of merge conflicts. For example, the number of
conflicting files and the size of changes are considered impor-
tant factors. Researchers [55] have previously found that when
developers use distributed version control systems that they
commit small changes often. Therefore, practitioners should
strive to make smaller commits, and commit often. Other
agile development processes such as continuous integration,
iterative development, and branch merging policies are known
to facilitate development in large, distributed teams. However,
not all practitioners are actively using such techniques [56],
and further work is needed to determine how to enable and
ease adoption of these processes and practices.

C. For Tool Builders
Version control systems provide an easy method for storing

and retrieving recent development history, but examining older
development history at scale and in a usable manner has
not completely met practitioners’ expectations. Tool builders
should work to address this unmet need by leveraging research
in search systems for developer-assistance [57] and machine

9



learning-based code assistance [58] to provide intuitive and
expressive tools for history exploration.

Practitioners indicate that current merge toolsets do not
scale to handle large, complex merge conflicts (see Sec-
tion III-C6). To address this concern, tool builders should
look at consolidating feature sets that currently span multiple
tools in order to provide better usability (I1 from Table V).
Tool builders should also add more expressive search and
filtering features for both project history and meta-information
related to merge conflicts (I2, I3) to ease the frustration of
practitioners that must understand the context and evolution
of code involved in the conflict.

Finally, we found practitioners having to “guess-timate” the
difficulty of the conflict resolution to decide whether to work
on it now or delay it, or whether to integrate the changes or
simply start over. Prediction tools that identify the complexity
of conflicts and difficulty of resolution can help alleviate this.

V. THREATS TO VALIDITY

As in any empirical study, there are threats to validity with
our work. We attempt to remove these threats where possible,
and mitigate the effect when removal is not possible.

Construct: Interview questions were open-ended and de-
signed to elicit practitioner opinions about the experiences,
difficulties, and perceptions of merge conflicts. We determined
particular factors and needs after concluding all interviews,
and thus did not bias interview participants to only factors
previously mentioned. We created survey questions using fac-
tors found through card-based unitization. This methodology
allowed us to capture the common themes that practitioners
experience when working with merge conflicts, but might
have allowed themes specific to particular sub-groups to be
unrepresented in our results.

Internal Validity: Central tendency bias [59] occurs when
using 5-point Likert-type scales, since participants tend to
choose less opinionated answers. We lessen this effect by
examining the answers in comparison to each other, as op-
posed to analysis of absolute mean values. Because we use
this method to highlight stronger answers by degree, this also
means that we may have missed subtle trends across our data
that could have been visible otherwise.

External Validity: Interview results may not generalize to
all practitioners due to a small sample size, but we reduce
this effect by selecting interview participants from open- and
closed-source projects, varying industries, and varying project
sizes (see Table I). To expand and confirm our interview
results, we survey 162 practitioners to ensure our results match
with trends in the larger software development community. We
do not report a response rate for our survey, since social media
and mailing lists do not allow accurate measurement of the
number of individuals that read our recruitment message and
but did not choose to participate.

VI. RELATED WORK

Gousios et al. [60] conduct a study in which they ask
integrators to describe difficulties in maintaining their projects

and code contributions. They showed that integrators have
problems with their tools, have trouble with non-atomic
changesets, and rank git knowledge in the top 30% of their
list of biggest challenges. Gousios et al. [61] additionally
conducted a study into the challenges of the pull-based model
from the perspective of contributors. They found that most
challenges relate to code contribution, the tools and model
used to contribute, and the social aspects of contributing
(specifically highlighting merge conflicts). These works focus
on the collaborative processes that go into contributing to
open-source projects and operating as integrators within them,
whereas we examine the issues inherent to merge conflicts and
the tools built to support their resolution.

Guzzi et al. [35] conducted an exploratory investigation
and tool evaluation for supporting collaboration in teamwork
within the IDE. They found that developers working within a
variety of companies were able to quickly and easily resolve
merge conflicts, and did this using merge tools. However,
they also note that although automatic merging was used,
their participants also manually checked each conflict and
suggest that this reveals some mistrust of tools. Guzzi et al.
further explain that their interviewees avoid merge conflicts
by using strict policies and software modularity. Their results
complement our findings that toolset mistrust is a major
concern, and that standards need to be implemented in order
to avoid complex merge conflicts.

Codoban et al. [37] seek to evaluate developer understand-
ing and usage of code history. Our results show that tool
support during history exploration factors into the difficulty
of a merge conflict a moderate amount (N10). This result in-
dependently verifies their findings that practitioners experience
tool limitations in usability (I1) and history visualization (I4).

VII. CONCLUSION

Practitioner perceptions of merge conflicts have an impact
on their development process. First, they use perceptions to
determine which tactics they will use to resolve the con-
flict. After choosing how to resolve the conflict, practitioners
encounter a new set of needs, both technical and social.
Understanding these perceptions and needs is critical to un-
derstanding how to design tools which conform to the issues
that these practitioners face in collaborative development. We
provide actionable implications for researchers, tool builders,
and practitioners to harness the results of our study. In future
work, we hope to explore whether these factors, needs, and
desired toolset improvements can be seamlessly merged into
tools or techniques that assist developers’ workflows.

ACKNOWLEDGMENTS

We thank Iftekhar Ahmed, Amin Alipour, Alex Hoffer,
Michael Hilton, Sruti Ragavan, and the anonymous reviewers
for their valuable comments on earlier versions of this paper.
We also thank all of our interview and survey participants,
especially those who helped distribute survey links. This
research was partially supported by NSF grants CCF-1439957,
CCF-1553741, CCF-1560526, and IIS-1559657.

10



REFERENCES

[1] L. Hattori and M. Lanza, “Syde: A tool for collaborative software
development,” in International Conference on Software Engineering
(ICSE), 2010, pp. 235–238.

[2] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in International Conference on
Software Engineering (ICSE), 2013, pp. 732–741.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in International Symposium and European
Conference on Foundations of Software Engineering (ESEC/FSE), 2011,
pp. 168–178.

[4] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in International Symposium on the Foundations of
Software Engineering (FSE), 2012, p. 45.

[5] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
merge conflicts in distributed software development,” in International
Conference on Global Software Engineering (ICGSE), 2014, pp. 26–35.

[6] C. R. de Souza, D. Redmiles, and P. Dourish, “Breaking the code,
moving between private and public work in collaborative software
development,” in International Conference on Supporting Group Work
(GROUP), 2003, pp. 105–114.

[7] M. Cataldo and J. D. Herbsleb, “Communication networks in geo-
graphically distributed software development,” in ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW),
2008, pp. 579–588.

[8] A. Sarma, “Palantir: Enhancing configuration management systems with
workspace awareness to detect and resolve emerging conflicts,” Ph.D.
dissertation, University of California, Irvine, 2008.

[9] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in International Conference on Software Engineering
(ICSE), 2012, pp. 342–352.

[10] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolution
by using fine-grained code change history,” in International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 2016, pp.
661–664.

[11] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans-
actions on Software Engineering (TSE), vol. 28, no. 5, pp. 449–462,
2002.

[12] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen, “Refactoring-aware
configuration management for object-oriented programs,” in Interna-
tional Conference on Software Engineering (ICSE), 2007, pp. 427–436.

[13] J. J. Hunt and W. F. Tichy, “Extensible language-aware merging,” in
International Conference on Software Maintenance (ICSM), 2002, pp.
511–520.

[14] T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in International Conference on Software
Engineering (ICSE), 2010, pp. 175–184.

[15] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in International Symposium on
Foundations of Software Engineering (FSE), 2006, pp. 23–34.

[16] B. De Alwis and G. Murphy, “Answering conceptual queries with ferret,”
in International Conference on Software Engineering (ICSE), 2008, pp.
21–30.

[17] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in International Conference on Software
Engineering (ICSE), 2007, pp. 344–353.

[18] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
Advanced Empirical Software Engineering. Springer, 2008, pp. 285–
311.

[19] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in International Conference on
Software Engineering (ICSE), 2006, pp. 492–501.

[20] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical
Software Engineering. Springer, 2008.

[21] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: An exploratory study in industry,”
in International Symposium on the Foundations of Software Engineering
(FSE), 2012, p. 51.

[22] L. A. Goodman, “Snowball sampling,” The Annals of Mathematical
Statistics, pp. 148–170, 1961.

[23] “Companion site,” http://engr.oregonstate.edu/⇠nelsonni/icsme17.html.

[24] C. B. Seaman, “Qualitative methods,” in Guide to Advanced Empirical
Software Engineering. Springer, 2008, pp. 35–62.

[25] P. I. Fusch and L. R. Ness, “Are we there yet? data saturation in
qualitative research,” The Qualitative Report, vol. 20, no. 9, p. 1408,
2015.

[26] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding in-
depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement,” Sociological Methods & Research, vol. 42,
no. 3, pp. 294–320, 2013.

[27] D. Spencer, Card Sorting: Designing Usable Categories. Rosenfeld
Media, 2009.

[28] W. Hudson, “Card sorting,” in The Encyclopedia of Human-Computer
Interaction. Interaction Design Foundation, 2013.

[29] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability,” The Internet and Higher Education, vol. 9, no. 1,
pp. 1–8, 2006.

[30] J. Ritchie, J. Lewis, C. M. Nicholls, R. Ormston et al., Qualitative Re-
search Practice: A Guide for Social Science Students and Researchers.
Sage, 2013.

[31] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
Engineering (TSE), vol. 26, no. 8, pp. 797–814, 2000.

[32] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering (TSE), no. 4, pp. 308–320, 1976.

[33] D. Garmus and D. Herron, Function Point Analysis: Measurement
Practices for Successful Software Projects. Addison-Wesley Longman
Publishing Co., 2001.

[34] C. R. Symons, “Function point analysis: Difficulties and improvements,”
IEEE Transactions on Software Engineering (TSE), vol. 14, no. 1, pp.
2–11, 1988.

[35] A. Guzzi, A. Bacchelli, Y. Riche, and A. van Deursen, “Supporting de-
velopers’ coordination in the IDE,” in Computer Supported Cooperative
Work & Social Computing (CSCW), 2015, pp. 518–532.

[36] C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “TIPMerge: Recom-
mending experts for integrating changes across branches,” in Interna-
tional Symposium on Foundations of Software Engineering (FSE), 2016,
pp. 523–534.

[37] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history
under the lens: A study on why and how developers examine it,”
in International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 1–10.

[38] C. R. B. de Souza and D. F. Redmiles, “An empirical study of software
developers’ management of dependencies and changes,” in International
Conference on Software Engineering (ICSE), 2008, pp. 241–250.

[39] A. Forward and T. C. Lethbridge, “The relevance of software docu-
mentation, tools and technologies: A survey,” in ACM Symposium on
Document Engineering (DocEng), 2002, pp. 26–33.

[40] K. Yamauchi, J. Yang, K. Hotta, Y. Higo, and S. Kusumoto, “Clustering
commits for understanding the intents of implementation,” in Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
2014, pp. 406–410.

[41] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classification of large changes into maintenance categories,” in Interna-
tional Conference on Program Comprehension (ICPC), 2009, pp. 30–39.

[42] L. F. Cortés-Coy, M. L. Vásquez, J. Aponte, and D. Poshyvanyk, “On
automatically generating commit messages via summarization of source
code changes,” in International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2014, pp. 275–284.

[43] L. P. Hattori and M. Lanza, “On the nature of commits,” in International
Workshop on Automated engineeRing of Autonomous and run-tiMe
evolvIng Systems (ARAMIS), ASE Workshops, 2008, pp. 63–71.

[44] N. Meiran, “Modeling cognitive control in task-switching,” Psycholog-
ical Research, vol. 63, no. 3, pp. 234–249, 2000.

[45] D. Gopher, L. Armony, and Y. Greenshpan, “Switching tasks and
attention policies,” Journal of Experimental Psychology: General, vol.
129, no. 3, p. 308, 2000.

[46] G. M. Weinberg, Quality Software Management, Vol. 1: Systems Think-
ing. Dorset House Publishing Co., 1992.

[47] X. Sun, B. Li, Y. Li, and Y. Chen, What Information in Software
Historical Repositories Do We Need to Support Software Maintenance
Tasks? An Approach Based on Topic Model. Springer, 2015, pp. 27–37.

11



[48] J. Guo, M. Rahimi, J. Cleland-Huang, A. Rasin, J. H. Hayes, and
M. Vierhauser, “Cold-start software analytics,” in International Con-
ference on Mining Software Repositories (MSR), 2016, pp. 142–153.

[49] Y. Yan, M. Menarini, and W. Griswold, “Mining software contracts for
software evolution,” in International Conference on Software Mainte-
nance and Evolution (ICSME), 2014, pp. 471–475.

[50] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2004, pp. 175–182.

[51] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Workshop on Experimental Computer Science (ExpCS), FCRC Work-
shop, 2007, p. 2.

[52] A. Blackwell and M. Burnett, “Applying attention investment to end-user
programming,” in Symposia on Human-Centric Computing Languages
and Environments (HCC), 2002, pp. 28–30.

[53] G. Convertino, J. Chen, B. Yost, Y. S. Ryu, and C. North, “Exploring
context switching and cognition in dual-view coordinated visualiza-
tions,” in International Conference on Coordinated and Multiple Views
in Exploratory Visualization (CMV), 2003, pp. 55–62.

[54] J. R. da Silva, E. Clua, L. Murta, and A. Sarma, “Niche vs. breadth:
Calculating expertise over time through a fine-grained analysis,” in Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), 2015, pp. 409–418.

[55] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” in Proceedings of the 36th International Conference on
Software Engineering (ICSE). ACM, 2014, pp. 322–333.

[56] S. Phillips, J. Sillito, and R. Walker, “Branching and merging: An
investigation into current version control practices,” in International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2011, pp. 9–15.

[57] T. Nabi, K. M. Sweeney, S. Lichlyter, D. Piorkowski, C. Scaffidi,
M. Burnett, and S. D. Fleming, “Putting Information Foraging Theory
to work: Community-based design patterns for programming tools,”
in Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2016, pp. 129–133.

[58] A. W. Bradley and G. C. Murphy, “Supporting software history explo-
ration,” in Working Conference on Mining Software Repositories (MSR),
2011, pp. 193–202.

[59] J. P. Guilford, Psychometric Methods. McGraw-Hill, 1954.
[60] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work

practices and challenges in pull-based development: The integrator’s per-
spective,” in International Conference on Software Engineering (ICSE),
2015, pp. 358–368.

[61] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: The contributor’s perspective,”
in Proceedings of the 38th International Conference on Software Engi-
neering (ICSE). ACM, 2016, pp. 285–296.

12


