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ABSTRACT
Although in theory the APIs of software libraries and frame-
works should be stable, they change in practice. This forces
clients of the library API to change as well, making software
maintenance expensive. Changing a client might not even
be an option if its source code is missing or certain policies
forbid its change. By giving a library both the old and the
new API, clients can be shielded from API changes and can
run with the new version of the library.

This paper presents our solution and a tool, ReBA, that
automatically generates compatibility layers between new
library APIs and old clients. In the first stage, ReBA gen-
erates another version of the library, called adapted-library,
that supports both the old and the new APIs. In the sec-
ond stage, ReBA shrinks the adapted-library into a minimal,
client-specific compatibility layer containing only classes truly
required by the client. Evaluations on controlled experi-
ments and case studies using Eclipse core libraries shows
that our approach effectively adapts clients to new library
versions, and is efficient.

Categories and Subject Descriptors D2.7 [Software En-
gineering:] Distribution, Maintenance, and Enhancement;
D.2.13 [Software Engineering:] Reusable Software

General Terms Design, Management.

Keywords Refactoring, libraries, component reuse, API
compatibility.

1. INTRODUCTION
Software libraries expose a set of Application Program-

ming Interfaces (APIs) that allow client applications to in-
teract with the library. A library API consists of a set of
public methods and classes that are meant to be used by
clients of that API. Sometimes new versions of library APIs
are backwards compatible, but often they are not. Our pre-
vious study [7] of five mature, widely used Java libraries and
frameworks, reveals a large number of API changes that are
not backwards compatible. For example, Struts [18] had 136
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API changes over a period of 14 months and Eclipse [8] had
51 API changes over a period of one year. In each of the
five systems, more than 80% of API-changes that are not
backwards compatible are caused by refactorings.

Refactorings [10] are program transformations that im-
prove the structure of the code without changing the ex-
ternal behavior. Examples of refactorings include renaming
classes and members, moving methods between classes, and
encapsulating fields by replacing direct references with ac-
cessor methods.

Although refactorings make libraries easier to understand
and use, refactorings often change library APIs. Library
clients either stick with the old, increasingly obsolete ver-
sions of libraries, or must be upgraded to use the latest ver-
sion. Upgrading the clients is traditionally done manually,
which is error-prone, tedious, and feels disruptive in the mid-
dle of development. This makes maintenance expensive.

Previous solutions to automate upgrading of clients advo-
cate that (a) source code of clients [3, 4, 12, 16] or (b) byte-
code [13,20] of clients be changed in response to library API
changes. However, this is not always possible. For exam-
ple, Eclipse IDE [8] ships with many 3rd party clients that
extend the functionality of the IDE. These clients are dis-
tributed in bytecode format only, without source code, and
have software licenses that prohibit changing the bytecodes
of clients for legal reasons.

Rather than waiting for 3rd party client developers to up-
date their clients whenever the library APIs change, we pro-
pose that clients are automatically shielded from the API
changes in the library. Our solution restores the binary
compatibility of the library: older binary clients continue to
link and run against the new libraries without changing or
recompiling the clients. Our solution automatically gener-
ates a refactoring-aware compatibility layer without requir-
ing any annotations from library developers. This compati-
bility layer gives library developers the freedom to improve
the library APIs without breaking older clients.

This paper presents ReBA, our refactoring-aware binary
adaptation tool. ReBA has several distinguishing features
that make it practical for modern large software systems
comprised of core libraries and many 3rd party clients. We
designed ReBA to meet the criteria that we believe are re-
quired for modern systems:

• Binary Clients: the solution should work with the
binary version of the clients. This is desirable because
large systems (e.g., IDEs) often do not own the source
code of 3rd party clients that extend the functionality
of the system.



Figure 1: Overview of our approach (arrows show dependences between modules). (a) Library and client
code are compatible. (b) API changes in library break compatibility. (c) Library developers use ReBA to
generate an adapted-library that supports both the old and the new APIs. (d) Given the adapted-library,
client developers use ReBA to carve out a client-specific compatibility layer. The old client code loads the
restored APIs from the compatibility layer and the APIs not changed from the new library.

• Dual Support: consider a large system like the Eclipse
IDE that ships with core libraries and 3rd party clients.
Some clients are updated regularly to use the new ver-
sions of libraries, but others are not. A solution must
allow both old and updated clients to simultaneously
use the new version of the libraries and be included in
the shipped product.

• Preserve Edits: the proposed solution should pre-
serve the edits (e.g., performance improvements or bug
fixes) of the library. This is important because old
clients can benefit from the enhancements in the li-
brary.

• Preserve Type Information: a known problem with
compatibility layers using the Adapter pattern [11](also
known as Wrapper) is that object identity breaks, since
adapter and the adaptee are two different classes. We
want to ensure that old clients that use type, iden-
tity, or equality comparisons (e.g., instanceof, ==, or
equals) would still work.

• Use Only Standard Compilers: this is desirable
because many developers do not trust modified com-
pilers or class loaders.

Figure 1 shows an overview of our solution. ReBA works
in two main stages. First, library developers use ReBA to
create a version of the library, called adapted-library (details
in Section 4). The adapted-library contains the same code
as the new version of the library, but it supports both the old
and the new APIs. Second, given this adapted-library, client
developers use ReBA to carve a custom-made, client-specific
compatibility layer (details in Section 5) using a static anal-
ysis technique based on points-to analysis [21].

This technique greatly reduces the size of the compatibil-
ity layer, while our conservative static analysis ensures that
an old client loads at runtime only classes that are backwards
compatible. The compatibility layer allows both old and new
clients to run simultaneously with the refactored library. In
addition, since the compatibility layer uses the same class
names that the old client expects, the layer preserves the
type information and identity of the adapted classes.

This paper makes three major contributions:
1. An innovative solution. Our solution automatically

generates a compatibility layer for a library that allows both

the old and new interface to be used in the same system. It
does not require programmers to annotate their library, but
builds the compatibility layer using information recorded by
a refactoring tool. It uses points-to analysis in a new way
to minimize the size of the layer.

2. Implementation. ReBA, our concrete implementa-
tion, works for Java programs. ReBA is implemented as an
Eclipse plugin, therefore it is conveniently integrated into
the widely used Eclipse IDE. To minimize the size of the
compatibility layer, we implemented the points-to analysis
using WALA [19], an analysis library from IBM Research.

3. Evaluation. We used ReBA to generate compat-
ibility layers in different scenarios (see Section 7). First,
we evaluated ReBA on the data obtained from a controlled
experiment with 10 different developers. Second, we evalu-
ated ReBA on three Eclipse libraries which were refactored
by Eclipse developers. For both scenarios we used ReBA
to generate and apply compatibility layers to a comprehen-
sive test suite created for a pre-refactoring version of the
library. After applying our compatibility layers, the tests
ran successfully. Profiling shows that the memory and run-
ning overhead imposed by our solution is small.

ReBA and our experimental results are available online:
http://netfiles.uiuc.edu/dig/ReBA

2. MOTIVATING EXAMPLES
We show three examples of API changes that cause prob-

lems for clients. These examples are taken from real world
case-studies, namely libraries that make up the official dis-
tribution of the Eclipse IDE [8].

With respect to how ReBA generates the compatibility
layers, API changes can be separated into three categories
which are mutually exclusive and cover all cases: deletions
of APIs, method-level API refactorings, and type-level API
refactoring. Each of the examples below belongs to one of
the three categories. The first three examples illustrate the
need for the adapted-library, the fourth example illustrates
the need to reduce the size of the adapted-library.

Deletion of APIs. In library jface.text version 20060926
(format yearmonthday), class DiffApplier is deleted. There
is at least one client, workbench.texteditor.tests that uses this
class. As a result of the deletion of DiffApplier, any version
of this client prior to 20060926 no longer works with the



// version 20070329 before refactoring
class RefactoringExecutionStarter {

...
void startCleanupRefactoring(ICompilationUnit[] cus,

boolean showWizard, Shell shell) {

ICleanUp[] cleanUps= CleanUpRefactoring.createCleanUps();
for (int i= 0; i < cleanUps.length; i++)

refactoring.addCleanUp(cleanUps[i]);
...

}
}

// version 20070405 after refactoring
class RefactoringExecutionStarter {

...
void startCleanupRefactoring(ICompilationUnit[] cus,

boolean showWizard, Shell shell,
ICleanUp[] cleanUps, String actionName) {

for (int i= 0; i < cleanUps.length; i++)
refactoring.addCleanUp(cleanUps[i]);

...
}

}

Figure 2: Example of ChangeMethodSignature refactoring in plugin jdt.ui. Two new arguments were added:
cleanUps was previously a local variable and is now extracted as an argument, actionName is a brand new
argument.

newer version of the library. To make this change backwards
compatible, ReBA creates a version of the library, which
we call adapted-library, where DiffApplier is added back.
Other than adding a dependency between the test client and
the adapted-library, ReBA requires no changes to the client.

Method-level refactorings. In library jdt.ui version
20070405, the signature of method RefactoringExecution-

Starter.startCleanupRefactoring changed from three ar-
guments to five arguments (see Fig.2). The library develop-
ers provided default values for the two new arguments when
they performed the refactoring. Calling the 5-argument me-
thod with the default values behaves like the previous 3-
argument method.

There is at least one client broken because of this API
change, the testing client jdt.ui.tests. To shield this client
from the change, ReBA generates an adapted-library con-
taining a version of jdt.ui where the original method with 3
arguments is restored. The method merely delegates to the
new version with 5 arguments, and passes the default values
for the extra arguments (see Fig.3). Because the adapted-
library delegates to the latest implementation of the method,
old clients can benefit from the improvements in the library.
When supplying the compatibility layer to the old client, all
tests run successfully.

//Adapted Library Class
class RefactoringExecutionStarter {

...
// ReBA adds this method with the old signature
void startCleanupRefactoring(ICompilationUnit[] cus,

boolean showWizard, Shell shell) {
return startCleanupRefactoring(cus, showWizard, shell,

CleanUpRefactoring.createCleanUps(),"Clean Up");
}

//new method with 5 arguments
void startCleanupRefactoring(ICompilationUnit[] cus,

boolean showWizard, Shell shell,
ICleanUp[] cleanUps, String actionName) {

//same implementation as in the
//new version of the library
...

}
}

Figure 3: Compatibility layer generated for
ChangeMethodSignature refactoring in library
jdt.ui

Type-level refactorings. In library workbench.texteditor

version 20060905, class Levenstein was renamed to Levenshtein

(notice an extra “h” character). There is at least one client,
workbench.texteditor.tests that is broken because of this change.
ReBA generates an adapted-library where the class name
Levenshtein is reverted back to Levenstein (all other code

edits in Levenshtein are preserved). Because the adapted-
library consistently uses the same class names that the old
client expects, client code that uses type checking (e.g., in-
stanceof) or makes use of object equality (equals) or ob-
ject identity (==), still runs as before, without requiring any
changes to the client.

The need for carving. After creating the adapted-
library, in order to enable both upgraded and old clients
to run simultaneously, one needs to keep both the adapted-
library and the new version of the library. This can result
in doubling the memory consumption.

To alleviate this problem, once it generated the adapted-
library, ReBA carves out a client-specific compatibility layer
which is much smaller than the adapted-library. Recall
our previous example where ReBA generated the adapted-
library by reverting the renamed class Levenshtein back to
Levenstein. Figure 4 shows some classes in the adapted-
library that use Levenstein. A client can use Factory to
create instances of Levenstein class. Factory has a direct
source reference to Levenstein, therefore Factory needs to
be in the compatibility layer. If it was not in the compat-
ibility layer, the client would load the version of Factory

from the new library where Factory creates instances of
Levenshtein, thus breaking the client.

class Factory {
Levenstein create(){
return new Levenstein();

}
}

class Indirect {
Object m() {
Factory factory = new Factory();
return factory.create();

}
}

Figure 4: Library classes that use Levenstein

The other library class, Indirect, does not appear to have
a reference to Levenstein. Does Indirect needs to be put
in the compatibility layer? Yes. Although the source code
of Indirect does not have a reference to Levenstein, its
bytecode does. This is because the method call to create in
the bytecode of m is replaced by the method descriptor for
create. Bytecode method descriptors contain not just the
method name and arguments, but also the return type [14].
Therefore, in order to restore the backward compatibility,
the version of Indirect that is compiled with Levenstein

needs to be put in the compatibility layer, otherwise a run-
time error “method not found” is thrown. ReBA uses a
points-to analysis (details in Section 5) to find all classes
in the adapted-library that can refer to Levenstein, thus



it finds both Factory and Indirect and adds them to the
compatibility layer. The carved compatibility layer contains
only Levenstein, Factory, and Indirect.

3. OVERVIEW

3.1 Background information
During library evolution, most changes add new API meth-

ods and classes that do not affect old clients. Therefore, we
distinguish between API changes that are backwards com-
patible (e.g., additions of new APIs), and those that are not
backwards-compatible (e.g., deletion of API methods, re-
naming API classes). Since only the latter category affects
old clients, from now on, by API changes we refer to those
changes that are not backwards compatible.

Besides refactorings, libraries evolve through edits. We
distinguish between API edits (e.g., edits that change the
APIs) and code edits including all remaining edits (e.g., per-
formance improvements, bug fixes). Code edits in general
have less defined semantics, making it harder for tools to
automatically reason about them. ReBA preserves in the
adapted-library all code edits from the latest version of the
library, and adapts the API deletions and API refactorings.
Refactorings preserve the semantics, but edits do not. Al-
though ReBA intends to ensure that old binary clients run
“correctly” with the new versions of the library, because of
the edits, we cannot give such strong semantic guarantees.

In a statically-typed language like Java, an API consists
of two things: (i) the type/class of an object, represented by
a fully qualified (i.e., package.class) name along with a set of
inherited classes and interfaces and (ii) the message protocol,
or the set of methods and public fields that it supports. Thus
we further classify API refactorings based on what aspect of
the API is changed (type or method protocol).

In the current implementation, ReBA supports supports
the following API changes. (i) Type-changing refactorings
include rename class, move class to different package, re-
name package, and move package (these refactorings change
the fully qualified name of a type). (ii) Method-level refactor-
ings include rename method, move method, change method
signature, encapsulate field with accessor methods, rename
field. (iii) API deletions include delete class, delete method,
delete package. These API changes occur most frequently
in practice [7].

3.2 High-level Overview
This section gives an overview of each of the two stages of

our solution.

Creating the Adapted Library.
One approach to creating a backwards-compatible, adapted-

library, is to start from the new version of the library and
undo all API changes, in the reverse order in which they
happened. Although simple, this approach has two limita-
tions. First, one needs to selectively undo refactorings while
ignoring API additions. There can be dependences between
refactorings and API additions, so undoing one without the
other is hard. Second, from a practical point of view, tools
that record API changes might not store all the informa-
tion required to undo an API change. For example, Eclipse
refactoring logs do not store enough information to undo
deletions.

INPUT: LibraryNew, LibraryOld , ∆Library = (R1, R2, ..., Rn)

OUTPUT: AdaptedLibrary

Creating AdaptedLibrary begin

1 AdaptedLibrary = LibraryNew

2 forEach(Operation op: ∆Library)

3 Operation eop = preserveOldAPI(op)

4 LibraryOld = replayOperation( eop, LibraryOld)

5 endForEach

6 AdaptedLibrary += copyRestoredElements(LibraryOld)

7 AdaptedLibrary = reverseTypeChanges(AdaptedLibrary)

end

Figure 5: Overview of creating the Adapted-Library

Therefore, ReBA does not undo API changes on the newer
version of the library, but it replays the (modified) API
changes on the old version of the library. When replaying
the API changes, ReBA alters them such that they preserve
the backwards compatibility (e.g., a delete operation is not
replayed, and a rename method leaves a delegate).

Figure 5 shows an overview of creating the adapted-library.
The algorithm takes as input the source code of the new
and old versions of the library, and the trace of API changes
that lead to the new version. These API changes can be
retrieved from an IDE like Eclipse (version 3.3) that auto-
matically logs all refactorings and deletions. Alternatively,
API changes can be inferred using our previous tool Refac-
toringCrawler [6].

ReBA starts from the old library version and processes
each library API change in the order in which they hap-
pened. For each API change op, ReBA creates a source
transformation, eop, that creates the refactored program el-
ement and also preserves the old element. Recalling our
example in Fig.2, ReBA creates another change signature
refactoring which keeps both the old and the new method
(the old method merely delegates to the new method). Then
ReBA replays the eop transformation on the old version of the
library.

Once it processes all API changes, ReBA copies the changed
program elements from LibraryOld to AdaptedLibrary. Al-
though the AdaptedLibrary starts as a replica of the new
library version, with each copying of program elements from
the modified LibraryOld, it supports more of the old APIs.

The compatibility of classes whose type was changed can-
not be restored by copying, but only by restoring their types.
ReBA restores the types by reversing refactorings that changed
the types. For example, ReBA restores the API compatibil-
ity of Levenshtein in our motivating example by renaming
it back to Levenstein.

At the end, the adapted-library contains all the APIs that
the old client requires. The algorithm processes refactorings
from different categories differently. Section 4 presents one
example from each category.

Carving the Compatibility layer.
To optimize for space consumption, ReBA constructs a

client-specific compatibility layer. The customized compat-
ibility layer consists of classes whose API compatibility was
restored in the adapted-library, as well as those classes that
are affected by this change. Some classes are directly af-
fected, for example, a class that has a reference to a re-
named class. Other classes are indirectly affected, for exam-
ple classes that do not have a source reference, but only a



INPUT: AdaptedLibrary, client, ∆Library = (R1, R2, ..., Rn)

OUTPUT: CompatLayer

Carving the Compatibility Layer begin

1 CompatLayer = ∅
2 Graph pointsToGraph =

3 buildPointsToGraph(AdaptedLibrary, client)

4 forEach(Operation op: ∆Library)

5 Class[] classes= getChangedClassesFrom(op)

6 Set reachingClasses =

getReachingNodes(pointsToGraph, classes)

7 CompatLayer = append(CompatLayer, {classes, reaching-

Classes})
8 endForEach

end

Figure 6: Overview of carving the compatibility
layer

bytecode reference to the restored class. Recalling our ex-
ample from Fig. 4, ReBA needs to put in the compatibility
layer both Factory (directly affected) and Indirect (indi-
rectly affected), in order to restore the binary compatibility.

To find both directly and indirectly affected classes, and
to keep only those classes that a specific client can reach to,
ReBA uses a points-to analysis. Points-to analysis estab-
lishes which pointers, or heap references, can point to which
variables or storage locations. Figure 6 gives an overview of
how we use points-to analysis to determine the direct and
indirect affected classes, the details of the analysis are found
in Section 5.

Starting from the client, ReBA first creates a directed
graph (see Fig.6) whose nodes are library classes reached
from the client and whose edges are points-to relations. Then
ReBA iteratively processes each API change and determines
the classes that are changed due to restoring their backwards
compatibility. ReBA traverses the pointsToGraph and gets
all other library classes that can reach to the restored classes.
For each refactoring, the compatibility layer grows by adding
the classes that are changed as well as their reaching classes.

Putting it all together.
Next we show how an old client is using the compatibility

layer along with the new version of the library. First we
give a gentle introduction to how classes are loaded in Java.
ReBA does not require any special class loading techniques,
thus it enables anybody who uses the standard class loading
to benefit from our solution.

In Java, classes are loaded lazily, only when they are
needed. Classes are loaded by a ClassLoader. When run-
ning a client, one has to specify the ClassPath, that is the
places where the bytecodes of all classes are located. The
ClassPath is a sequence of classpath entries (e.g., Jar files,
folders with bytecode files), each entry specifying a physical
location. When loading a class, the ClassLoader searches in
each entry of the classpath until it can locate a class having
the same fully qualified name as the searched class. In case
there are more than one class that match the fully qualified
name, the ClassLoader loads the first class that it finds using
the order specified in the class path entries.

After creating the compatibility layer, ReBA places it as
the first entry in the ClassPath of the client. Thus, at run-
time, when loading a class, the ClassLoader searches first
among the classes located in the compatibility layer.

Suppose that the old client asks for a class whose API
compatibility was restored by ReBA. The ClassLoader finds
this class in the compatibility layer and it loads it from there.
Even though a class with the same name (but which is not
backwards compatible) might exist in the new library, be-
cause the ClassPath entry for the compatibility layer comes
before the entry for the new library, the ClassLoader picks
the class from the compatibility layer.

Now suppose that the client searches for a class that is
backwards compatible even in the new version of the library
and is not present in the compatibility layer. The Class-
Loader searches for this class in the compatibility layer; it
is not found here, and the ClassLoader continues searching
in the new library where it finds the required class.

Now suppose that we have both an old client and a new
client running together. The compatibility layer allows the
old client to load classes that are backwards compatible as
described above. As for the new client, since it does not
have the compatibility layer among its ClassPath entries, it
can only load classes from the new library.

4. CREATING THE ADAPTED LIBRARY
This section describes how the adapted-libraries are gen-

erated by presenting one example from each of the three
categories of API changes. We use the same examples as in
our motivating section (Sec. 2).

4.1 Deletion of APIs
For operations belonging to this category, function pre-

serveOldAPI (line 3 in Fig.5) returns a NOP operation. For
example, when processing the operation that deletes class
DiffApplier, ReBA does not replay the deletion, thus it
keeps DiffApplier in the old version of the library. Later,
function copyRestoredElements copies DiffApplier from
the old version of the library to the adapted-library.

Function reverseTypeChanges does not process opera-
tions belonging to this category, since their API compatibil-
ity was restored previously by function copyRestoredEle-

ments.

4.2 Method-level Refactorings
For operations belonging to this category, function pre-

serveOldAPI returns a new operation. The new operation
is the same kind of refactoring as the original refactoring.
However, in addition to replacing the old method with the
refactored method, it creates another method with the same
signature as the old method, but with an implementation
that delegates to the refactored method.

For our motivating example of ChangeMethodSignature
(Fig. 2) that adds two arguments to startCleanupRefac-

toring, the new operation produced by preserveOldAPI

is another ChangeMethodSignature refactoring. Because
ReBA is implemented on top of Eclipse, it uses the Eclipse
representation to create new refactorings. In Eclipse (ver-
sion > 3.2), when playing a refactoring, the refactoring en-
gine logs each refactoring and it produces a refactoring de-
scriptor. This refactoring descriptor is a textual represen-
tation of the refactoring and contains information such as:
the type of refactoring, the program element on which the
refactoring operates (identified via a fully qualified name),
and arguments supplied by the user through the UI (e.g.,
the default values for added method arguments).



Function preserveOldAPI takes a refactoring descriptor
and it creates another refactoring descriptor. In our exam-
ple, the new refactoring descriptor specifies the same proper-
ties as the old descriptor: the type of refactoring, the input
element startCleanupRefactoring, the default values for
the two extra arguments (the String literal “Clean Up” and
“CleanUpRefactoring.createCleanUps()”), etc. In addition,
ReBA adds another tag specifying that the original method
should be kept and delegate to the refactored method. Out
of the new descriptor, ReBA creates a refactoring object and
replays this refactoring on the old version of the library.

Figure 7 shows that for the motivating example (Fig. 2),
function copyRestoredElements copies only the restored me-
thod with the old signature from the refactored version of
the old library to the adapted-library. ReBA does not copy
the method with the new signature from the old library. Re-
call that by construction, the adapted-library contains all
code edits from the new version of the library. Thus, the
adapted-library uses the same implementation of this me-
thod as the new version of the library. After copying the old
method in the adapted-library, because the copied method
delegates to the new implementation of the method (located
in the same class), ReBA allows clients to benefit from the
improvements (e.g., bug fixes, performance improvements)
in the new version of the library.

Figure 7: Using the ChangeMethodSignature mo-
tivating example (Fig. 2), function copyRestoredEle-

ments copies only the restored API elements.

Function reverseTypeChanges does not process opera-
tions from this category since their API compatibility was
restored previously.

4.3 Refactorings that Change Types
Operations in this category include all those that change

the fully qualified (e.g., package.class) names of classes. Fully
qualified names play a central role in how classes are loaded
at runtime; any changes to these names would cause older
clients to fail to load the class. Since a class cannot have two
names, restoring the compatibility of a class whose name has
changed, means restoring the old name of the class. This
restoration happens in two steps.

For refactorings belonging to this category, function pre-

serveOldAPI is the identity function, e.g., returns back the
original refactoring. Although this operation does not re-
store the backwards compatibility, ReBA still replays it on
the old library. This is needed because later refactorings
could depend on the names changed by refactorings in this
category. More specifically, later refactoring cannot be ex-
ecuted unless the previous refactorings were executed. The

reason for the dependences between refactorings is the fact
that refactoring engines identify program elements by their
fully qualified names (e.g., package.class.methodName for a
method). For example, given the sequence:

∆Library = {op1= RenameClass(A → B);
op2 = MoveMethod(B.m → C)}

Refactoring op2 could not discover method B.m unless it
looks into class B, thus op1 must take place before op2 could
proceed.

Function copyRestoredElements does not copy elements
affected by this kind of refactorings, because these elements
are not yet backwards compatible. Function reverseType-

Changes is the one that restores the compatibility of these
program elements by creating a reverse refactoring and ap-
plying it on the adapted-library. In our motivating example,
function reverseTypeChanges reverts Levenshtein back to
Levenstein by applying a reverse rename class refactoring.

To restore the old types, ReBA creates reverse refactorings
for all refactorings that changed the object types. Then
ReBA applies the reverse refactorings backwards, from the
last operation in ∆Library toward the first operation.

In the Levenshtein example, ReBA creates the reverse re-
factoring by constructing a new refactoring descriptor where
it swaps the old and new names of the class. ReBA passes
this refactoring descriptor to the Eclipse refactoring engine
to apply the refactoring.

5. CARVING THE COMPATIBILITY LAYER
From the adapted-library, ReBA carves a smaller, client-

specific compatibility layer. This layer contains only the
classes whose API compatibility was previously restored and
those classes from which a client could reach/load the re-
stored classes. All the remaining classes need not be present
in the compatibility layer, and can be loaded from the new
version of the library.

5.1 Points-to analysis
The heart of this stage is the use of points-to analysis to

find the set of classes, Reaching, that can “reach” to classes
whose API compatibility is restored. Points-to analysis es-
tablishes which pointers, or heap references, can point to
which variables or storage locations. Figure 8 illustrates the
creation of the points-to graph for a simple program.

In Fig. 8 allocated objects are marked with squares (<si:T>
where i shows the line number where the object is created,
T represents the type). Pointers to objects (i.e., references
in the Java terminology) are denoted by named circles, hav-
ing the same name as the pointer. Directed edges connect
pointers to the objects they point to, or to other pointers
(e.g., field f1 points to pointer u1). Fields are also connected
to their objects by directed edges.

We use a fast points-to analysis that is flow-insensitive: it
does not take into account the order of statements (e.g., line
5 does not“kill”the previous points-to relation u1 → s4 : U).
Being a static analysis, the points-to analysis is conserva-
tive, meaning that at runtime some pointers “might” point
to the computed allocated objects. Having false positives
means that our analysis can add unnecessary classes to the
compatibility layer. However, it is much more important
that the analysis does not miss cases when a class should be
added to the compatibility layer.

To build the points-to graph, we use WALA [19], a static
analysis library from IBM Research. The example we illus-



Figure 8: An example points-to graph at the end of
method m. (a) shows the source code, (b) shows the
points-to relations, (c) shows the points-to relations
between classes.

trated shows the points-to graph for an intraprocedural anal-
ysis. When the function has calls to other functions, WALA
does an interprocedural, context-sensitive analysis (i.e., it
takes the calling context into account when analyzing the
target of a function call.) To compute an interprocedural
analysis, WALA first creates the call graph using the entry-
points (e.g., main methods) from the client. WALA does not
need the source-code of the client or library, it only needs
the bytecode of client and library. Using the information
from the call graph, the interprocedural analysis expands
function calls. In other words, it builds the points-to graph
by traversing “through” function calls.

From the points-to graph created by WALA, ReBA cre-
ates a customized points-to graph where it represents points-
to relations at a higher granularity. Specifically, the custom
points-to graph represents points-to relations only among
classes. First, it short-circuits the original points-to graph
such that each pointer points to a leaf object (e.g., it changes
t1 → f1 → u1 → s5 : R to t1 → s5 : R). Next, for each
points-to relation in the short-circuited graph it creates a
points-to relation between the class where the pointer is de-
fined and the class of the pointed object. For the graph in
Fig. 8.b, ReBA creates the points-to graph in Fig. 8.c whose
nodes are classes and the edges are relations between classes.

Next, for each API change, ReBA determines the set of
classes changed in order to restore the API compatibility.
Then ReBA searches in its points-to graph for all classes
that can“reach”to these changed classes through the points-
to relations. Finally, ReBA puts the Reaching classes and
the changed classes in the custom-made compatibility layer.

6. DISCUSSION
During the first stage when ReBA generates the adapted-

library by replaying the modified API changes, ReBA only
needs access to the source code of the library, not the client.
Since the library developers use ReBA to generate the adapted-
library, ReBA has no problem accessing the library source
code. With each new library version, library developers
can ship a signed, trusted adapted-library that is backwards
compatible. Client developers can use ReBA to carve out
a custom compatibility layer. Additionally, library develop-
ers could also use ReBA to generate custom compatibility
layers for clients for which they do not have access to the
source code. For example, large frameworks like Eclipse ship
with 3rd party clients for which the framework providers do
not have access to source code. Eclipse developers could use

ReBA to accommodate 3rd party clients that make up the
official distribution of Eclipse.

In Java, the bytecode of the client contains as much in-
formation as the source code. In cases when the source
code of clients is missing, one could ask why not change
the bytecodes of clients directly? There is no technical rea-
son why one could not refactor the bytecodes of the client
in response to library refactorings. However, there might be
several other reasons why changing the bytecodes is not an
option. First, for legal reasons, several proprietary compa-
nies and software licenses forbid any changes in the byte-
codes of shipped clients. Even some open-source licenses
only allow changes in the source code. Second, even the
smallest change in the source code of clients might require
recompilation, thus rendering the previous bytecode patches
invalid. Having a bytecode patch that needs to be recreated
and reapplied at each recompilation of clients can easily lead
to expensive maintenance. Third, the bytecodes could be in-
tentionally obfuscated for privacy reasons.

Rather than using the points-to analysis, another approach
is to search in the bytecode for those classes that were changed
indirectly when restoring the compatibility of other classes.
For the example presented in Fig. 4, class Indirect would
be such a candidate. Although this approach is sufficient for
regular Java libraries and clients, it is not adequate for other
toolkits that extend the class lookup mechanism. For exam-
ple, in Eclipse framework, each library or client (e.g., plugin)
that makes up the IDE needs to specify its own Classpath.
Rather than using one single ClassLoader, Eclipse creates
individual ClassLoaders for each library or client. When
restoring the compatibility of an API class, ReBA needs to
put in the compatibility layer all classes that can transitively
reach to the restored class, regardless of whether or not these
classes have been changed. Failure to do so will result in
runtime linkage errors because the “reaching” class and the
restored class are not loaded by the same ClassLoader.

Our approach to adapt libraries is not limited to two con-
secutive versions of the library, but works for any two ver-
sions of a library. Given three different library versions, V1,
V2, and V3, the adapted-libraries/compatibility layers gen-
erated are not stacked on top of each other. To enable a
V1-compatible client to work with the V3 library, ReBA gen-
erates one single V1-V3 compatibility layer. Since this avoids
delegation between several layers, our approach results in a
smaller performance overhead for the client. The downside
of this approach is that the analysis for creating the V1-V3

layer does not reuse the analysis for creating the V1-V2 layer,
but starts all over. However, this analysis is fast.

Although ReBA does not currently handle all refactorings,
we examined all refactorings supported by the Eclipse IDE
and they all could be adapted in a similar way. Some Eclipse
refactorings are composed of smaller refactorings. For exam-
ple, ExtractClass refactoring which introduces another class
in the type hierarchy and moves methods in the introduced
class can be implemented by combining refactorings from
our second category (method-level) and refactorings from
the third category (type-level). Changes to the type inher-
itance hierarchy need to be reverted the same way how we
revert type names.

Although our solution is not language-specific, its imple-
mentation is. In order to adapt our solution to other pro-
gramming languages, these are the areas which will need
to be changed. First, class lookup mechanism is language-



specific. In Java, we place the compatibility layer as the
first entry in the Classpath. For example, Smalltalk uses a
dictionary to lookup classes, thus the adapted classes need
to be placed in the class dictionary. Second, the points-to
analysis uses the WALA library for Java, and an equivalent
library will be needed for the new programming language.
A language-specific points-to analysis can be used to ensure
that all class libraries that can “escape” the adapted-classes
are placed in the compatibility layer in order to preserve the
type and information identity of objects. Third, refactoring
engines are language-specific, so Eclipse’s refactoring engine
needs to be replaced by another engine.

Strengths. Our solution meets all four practical criteria
outlined in Section 1: it does not need access to the source
code of clients, nor does it require any changes to the clients.
Second, it supports both old and new clients to run against
a new version of the library. Third, it preserves the edits in
the library. Fourth, it preserves the type and identity of the
adapted classes.

The current state-of-the-practice in library design favors
deprecating the old APIs, and removing them after several
iterations. However, deprecated APIs are rarely removed.
For example, Java 1.4.2 runtime library has 365 deprecated
methods. Our solution enables libraries to evolve without
resulting in the proliferation of APIs. ReBA enables library
developers to maintain crisp APIs at the source code level,
while at the binary level, the old APIs are added back au-
tomatically for compatibility reasons.

Limitations. The key aspect of our solution is that
instead of putting a wrapper around the library, we give it
two interfaces, an old API and a new API. This only works
when the two interfaces are compatible. It is fine for the in-
terfaces to intersect, but they can not contradict each other.
For example, if library developers delete method A.m1, and
then rename A.m2→ A.m1, it is not possible to support both
the old and the new interface of class A. Although this might
seem like a severe limitation of our approach, in practice we
never met such conflicting changes.

Our adaptation approach adds some memory and CPU
overhead. However, the evaluations show that this overhead
is small enough to be considered acceptable.

7. EVALUATION
In the evaluation, we want to answer these questions:

• Q1(effectiveness): Does our generated compatibility
layer allow older clients to run with newer versions of
libraries?

• Q2(efficiency): Is the generated compatibility layer
only as large as a concrete client would need? What is
the performance overhead imposed by our solution?

To answer these questions we conducted different studies.
The first study is a controlled experiment of 10 developers
evolving a LAN library [5] independently. The second study
is a suite of case-studies using ReBA to restore the API
compatibility of Eclipse core libraries. We used comprehen-
sive JUnit test suites developed by the library provider. If
the old tests succeed with the new version of the library, it
implies a strong likelihood that a regular client application
would succeed too.

Table 1: Demographics of the participants.

Mean Std.Dev. Min. Max

Years Programming 8.35 1.97 5 12

Years Java Programming 4.7 1.72 2.5 7.5

Years Using Eclipse 2.1 1.24 0.5 4

7.1 Controlled experiment
We asked 10 developers to independently evolve a ver-

sion of a LAN simulation library [5]. The library code was
accompanied by an automated JUnit test suite. Each de-
veloper had to implement one of two features. How they
implemented the feature was their choice. In addition, de-
velopers had the freedom to refactor any APIs in the library,
though we did not influence their choices. We requested that
the developers not work for more than one hour.

Demographics. Although the developers were grad-
uate students, they were mature programmers with several
years of programming experience. Most of them had worked
in industry previously (two of them had extensive consult-
ing experience, two others were active Eclipse committers).
Each developer implemented successfully the required fea-
ture. Table 1 shows the demographics of our population.

Experimental treatment. We took their solutions,
and used ReBA to generate a compatibility layer for each of
their solution. Then we ran the original test suite with the
compatibility layer and the new library versions.

Results. Table 2 shows the number of compile errors
and test failures when putting together the old JUnit test
suite with the new library. Each row displays the data for
a particular developer solution: the number of errors before
and after placing the ReBA-generated compatibility layer.
After using the ReBA-generated compatibility layers, there
were no problems for any the 10 solutions. The last row
shows a solution that did not contain any refactoring nor
other API-breaking changes - as a consequence, ReBA gen-
erated an empty layer and the original test ran successfully.

To answer the efficiency question, with regards to the min-
imality of our compatibility layers, we manually examined
the generated compatibility layers and they contain exactly
the classes that the old tests need. Removing any class from
the compatibility layer would break the API compatibility.

We used the TPTP [eclipse.org/tptp] profiler to measure
the memory and the runtime overhead of using ReBA com-
patibility layers. To measure the overhead, for each solution
we manually upgraded the client test suite and used it as
the base case. The overhead of using the generated layer
instead of manually upgrading the client is small. In cases
that involve the encapsulation of fields with accessor meth-
ods, the runtime overhead is negative because the adapted
version directly references the fields, whereas the refactored
version uses the accessor methods.

7.2 Case studies
We took three core Eclipse libraries. As API clients we

used older versions of JUnit test suites created by the Eclipse
developers. Each row in Table 3 shows the versions of the
library and client. The client workbench.texteditor.tests is
an older version of an Eclipse test suite comprising 106
tests. The third row shows an example of an Eclipse library,
core.refactoring breaking an Eclipse UI client, ui.refactoring.

Table 4 displays the effectiveness and efficiency of the com-
patibility layer generated by ReBA. After using the compat-



Table 2: The effectiveness and efficiency of ReBA compatibility layers for the controlled experiment be-
fore/after applying the compatibility layer

Developer API-Breaking CompileErrors TestFailures MemoryUsed[B] Memory RunningTime[ms] Running

Solution Changes Before After Before After Before After Overhead Before After Overhead

#1 1 ChangeMethodSignature, 6 EncapsulateField 34 0 3 0 1418312 1532640 8.06% 14.37 14.02 -2.39%

#2 6 EncapsulateField 29 0 3 0 1417896 1532216 8.06% 14.98 14.35 -4.21%

#3 2 ChangeMethodSignature 4 0 2 0 1414864 1533584 8.39% 9.65 10.03 3.93%

#4 1 RenameMethod, 2 ChangeMethodSignature 2 0 1 0 1418648 1535296 8.22% 8.7 8.9 2.65%

#5 2 RenameType, 1 RenameField 19 0 3 0 1420400 1526888 7.49% 7.86 7.99 1.56%

#6 3 RenameMethod 5 0 2 0 1422376 1538616 8.14% 10.0 10.1 1.29%

#7 6 EncapsulateField 29 0 3 0 1419296 1532056 7.94% 14.1 13.7 -2.33%

#8 1 DeleteMethod, 1 EncapsulateField 6 0 3 0 1421480 1532968 7.84% 11.4 11.0 -2.98%

#9 3 ChangeMethodSignature 2 0 2 0 1426664 1534736 7.57% 7.94 8.26 4.01%

#10 0 0 0 0 0 1358884 1358884 0 7.62 7.62 0

Table 3: Eclipse plugins used as case studies
Library LibrarySize[LOC] client

workbench.texteditor 16842 workbench.texteditor.tests
v20060905 v20060829 (106 tests)

jface.text 31551 workbench.texteditor.tests
v20060926 v20060829 (106 tests)

ltk.core.refactoring 8121 ltk.ui.refactoring
v20060228 v20060131

ibility layer generated by ReBA, all but one tests passed for
the first two case studies. However, the single failing test is
a test that was failing even when library and tests in Eclipse
are compatible (both have the same version number).

In the core.refactoring study, since Eclipse CVS repository
does not contain any tests for this library, we could not run
any automated test suite before/after applying the compat-
ibility layer. However, since the ui.refactoring is a graphi-
cal client, we exercised the UI manually, after applying the
ReBA-generated compatibility layer. All usage scenarios re-
veal that the client is working properly.

To answer the efficiency question, we examined the com-
patibility layer and found that it contains only the classes
that are truly needed by the client. To measure the mem-
ory and running overhead, we manually upgraded the source
code of the client to make the client compilable; we used this
upgraded client as the base for comparison with the compat-
ibility layer. The memory overhead is much smaller in the
case studies because the compatibility layer is very small
compared to the large number of classes in each library.

All experiments were performed on a laptop with Intel
Pentium M, 1.6GHz processor, and 512MB of RAM. The
analysis done by WALA is scalable. WALA takes 2 minutes
to create the points-to graph for jdt.ui, a relatively large
library of 461 KLOC.

8. RELATED WORK
Restoring Source Compatibility Upgrading the source

code of clients in response to library changes has been a long
time research topic [3, 4, 7, 12, 16]. However, these solutions
require that source code of clients be available. This is not
always the case, especially in a modern large system com-
prised of a multitude of clients, some of these being open-
source, others proprietary.

Restoring Binary Compatibility. There are several
previous solutions [9, 13, 15, 17, 20] that aim to restore the
binary compatibility. Purtilo and Atlee [15] present a lan-
guage, Nimble, that allows one to specify how the parame-
ters of a function call from an old module can be adapted
to match the new signature of the function. Nimble han-
dles a rich set of changes in function signatures: reordering
of parameters, coercing primitive types into other primitive
types, etc. Using Nimble, programmers write the mapping

between the two versions of the function, then the system
generates a function with the old signature that delegates
to the function with the new signature. Nimble works for
procedural languages, whereas ReBA is an approach for OO
languages. The function signature changes in Nimble are
similar with the ChangeMethodSignature refactorings. In
addition, ReBA supports other types of API changes.

Keller and Hölzle [13] present BCA, a tool that automat-
ically rewrites the bytecodes of Java clients using informa-
tion that a user supplies in delta files. BCA compiles the
delta files and automatically inserts the bytecode patches
into bytecodes of clients before loading the client classes.
Although BCA can handle a large range of API changes,
it requires that developers use the BCA compiler and class
loader. For security and legal reasons, developers are reluc-
tant to use solutions that require changing the bytecodes.

The Adapter/Wrapper [11] pattern adapts a class’s inter-
face to the interface that a client expects. The adapter/wrap-
per object delegates to the adaptee/wrapped object. This
solution works fine when the client code can be changed to
use the wrapper wherever it used the original class. How-
ever, the adapter pattern has problems when restoring the
binary compatibility. Because the wrapper and the wrapped
object need to have different names, their identity and type
information is different. Clients could potentially end up
with objects of the wrapper as well as wrapped objects, de-
pending on whether the client instantiates the wrapper di-
rectly, or it gets an indirect instance from the library. Com-
paring the wrapper and the wrapped through equals, ==,
or instanceof, would not work.

Warth et al. [20] present expanders, wrappers automati-
cally generated from annotations provided by the user. How-
ever, expanders are only available in code that explicitly im-
ports them, thus it requires that client code knows a priori
about the expanders. Being based on the Adapter pattern,
expanders have the same limitations.

Savga and Rudolf [17] overcome the above limitation by
ensuring that (i) the wrapper has the same type information
as the one expected by the client and (ii) the library itself
would always return only instances of the wrapper objects.
To restore the old API of the library they execute comebacks
which are program transformations that revert all the API
refactorings in the library. This enables old clients to work,
but not new clients. In contrast, our solution does not mod-
ify the library, thus new clients continue to work. Their so-
lution, like ours, preserves the edits in the library. However,
their solution generates wrappers for all public classes in the
library, whereas our solution generates adapted-classes only
for the classes that have changed through refactoring, thus
reducing the delegation overhead. In addition, our solution
handles the deletion of APIs.



Table 4: Effectiveness and efficiency of ReBA using Eclipse plugins as case studies.
Study API-Breaking CompileErrors RuntimeFailures MemoryUsage[B] Memory RunningTime[s] Running

Changes Before After Before After Before After Overhead Before After Overhead

#1 1 RenameClass 29 0 25 1 140003416 140004056 457*10−6% 14.746 14.748 0.009%

#2 1 DeleteClass 6 0 18 1 140044056 140044072 11*10−6% 14.67 14.40 0.09%

#3 4 DelClass, 4 DelMethod, 1 RenaMethod 27 0 12 0 17589288 17589402 648*10−6% 8.452 8.453 0.01%

2 ChangeMethSig, 1 MoveClass, 1 DelField

We solve the object identity problem in a different way.
Rather than creating a wrapper and a wrapped object, we
combine the wrapper (the old interface) and the wrapped
object (the new interface) into one single class, the adapted-
class. In addition, the points-to analysis ensures that the
client and the compatibility layer always instantiate the same
class, namely the adapted-class, thus preserving object iden-
tity and type information.

There is large body of work in the area of bridging com-
ponents using architectural connectors [1]. Architectural
connectors can be used to adapt interface mismatches. Al-
though architectural connectors can adapt other types of
changes besides syntactic interface change (e.g., behavioral,
protocol), this approach requires that library developers write
formal specifications. From these specifications, tools can
automatically synthesize adapters, for example as in [2, 22].
ReBA does not make any behavioral guarantees since it han-
dles edits as well, although it ensures that the behavior of
the client is not changed with respect to API refactorings in
the library. However, ReBA is practical because it does not
require that library developers write specifications.

Lastly, previous solutions (except [12,17]) demand that li-
brary developers write annotations/mappings/specifications
that are used by the upgrading tools. Library developers are
usually reluctant to write such annotations. ReBA harvests
the refactoring information from the library’s refactoring en-
gine, while liberating the library developers from the burden
of manually writing annotations.

9. CONCLUSIONS
Managing software evolution is complex, and no technique

will be a silver bullet. In the long run, source code must
evolve to be compatible with new versions of libraries. In
the short run, however, it is valuable to allow new versions
of libraries to replace their old versions without changing the
clients that use them. Our method of binary compatibility,
embodied in the ReBA system, allows a library to simulta-
neously support the old and the new APIs. This allows it
to be used in a system with both updated and non-updated
clients. The producer of the library will make an adapted
version that supports both versions of the API, but which
has a lot of redundancy. The consumer of the library then
makes a version of the adapted-library that eliminates the
redundancy by specializing it to the client that is using it.
The result, as shown by our evaluation, is a system that is
both effective and efficient.

Compared to other binary compatibility techniques, our
solution is easy to apply and does not require modifying
bytecodes. It should be considered by library producers who
are worried about the cost of library evolution on their cus-
tomers.
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