
Best Paper Award at ICST ’13

CHECK-THEN-ACT Misuse of Java Concurrent Collections

Yu Lin and Danny Dig
University of Illinois at Urbana-Champaign

{yulin2, dig}@illinois.edu

Abstract—Concurrent collections provide thread-safe,
highly-scalable operations, and are widely used in practice.
However, programmers can misuse these concurrent collections
when composing two operations where a check on the collection
(such as non-emptiness) precedes an action (such as removing
an entry). Unless the whole composition is atomic, the program
contains an atomicity violation bug.

In this paper we present the first empirical study of CHECK-
THEN-ACT idioms of Java concurrent collections in a large
corpus of open-source applications. We catalog nine commonly
misused CHECK-THEN-ACT idioms and show the correct usage.
We quantitatively and qualitatively analyze 28 widely-used
open source Java projects that use Java concurrency collections
– comprising 6.4M lines of code. We classify the commonly
used idioms, the ones that are the most error-prone, and the
evolution of the programs with respect to misused idioms. We
implemented a tool, CTADETECTOR, to detect and correct
misused CHECK-THEN-ACT idioms. Using CTADETECTOR we
found 282 buggy instances. We reported 155 to the developers,
who examined 90 of them. The developers confirmed 60 as new
bugs and accepted our patch. This shows that CHECK-THEN-
ACT idioms are commonly misused in practice, and correcting
them is important.

I. INTRODUCTION

The hardware industry keeps up with Moore’s law by
resorting to multicore processing. Nowadays multicores are
everywhere: in smart phones, tablets, laptops, and desktop
computers. In the multicore era, the software industry can
benefit from hardware improvements if they leverage concur-
rent programming. However, writing concurrent programs is
hard: the programmer has to balance two conflicting forces,
thread-safety and performance.

The industry trend is to convert the hard problem of
using concurrency into the easier problem of using a concur-
rent library. For example, Microsoft provides Task Parallel
Library (TPL) [1] and Collections.Concurrent (CC [2]),
Intel provides the Threading Building Blocks (TBB) [3],
and the Java community uses the java.util.concurrent
(j.u.c.) [4] library.

According to previous empirical studies of concurrent
library usage [5]–[8], concurrent collections are one of
the most widely-used features. Concurrent collections (e.g.,
ConcurrentHashMap from j.u.c.) contain thread-safe,
scalable data structures. Their individual operations are
thread-safe. For example, several threads can safely put into
the same ConcurrentHashMap in parallel.

However, concurrent collections can be easily misused.
Often programmers combine several operations to express
higher-level semantics such as CHECK-THEN-ACT [7] id-
ioms. In this idiom, the code first checks a condition, and
then acts based on the result of the condition.

Figure 1 shows three real-world examples of CHECK-
THEN-ACT idioms. The labels chk and act mark the check
and act operations, respectively. In Fig. 1(a) the code checks
whether a ConcurrentHashMap loaderPC contains a spe-
cific key and if it does not, the code creates a new value and
puts it into the map. In Fig. 1(b) the code checks whether
the queue is empty, and if not, it removes elements from the
queue. Figure 1(c) shows a classic lazy-initialization: the
code checks whether a list reference is null, and if so, it
creates a new list and adds elements into the list.

All three examples lead to bugs when they are executed
under concurrent threads, say T1 and T2. In Fig. 1(a), sup-
pose that both T1 and T2 execute statement chk and find that
the map does not contain the key. Thus, they both calculate
the value and put it into the map. Whoever is the last one
will overwrite the value put by the other thread. This breaks
the put-if-absent semantics of the original code. In Fig. 1(b),
if T2 removes the last element from the queue while T1 is
between chk and act, the element retrieved by T1 will be
null, which will lead to a NullPointerException in the
fifth line of code. In Fig. 1(c) suppose that both threads
find the list field is null and initialize it. In this case one
initialization will override the other. The elements added by
one thread will be lost. We found and reported all three
bugs to the developers, who confirmed them as new bugs
and applied our patch.

Notice that these are all examples of atomicity violation
bugs: an operation executed by a thread T2 between the
T1 thread’s execution of chk and act statements might
make T1 act based on a stale condition. This can result
in corrupted data structures, null pointer exceptions, and
semantic errors (e.g., overwrite). Such errors can occur even
if the programmers use concurrent libraries, as shown in our
three examples. We call the above errors semantic bugs.

In addition to semantic bugs, programmers can also in-
troduce performance bugs when using CHECK-THEN-ACT.
A performance bug is an over-synchronized CHECK-THEN-
ACT idiom that harms the performance. For the example
in Fig. 1(a), suppose that the programmer used a lock to
make the CHECK-THEN-ACT idiom atomic. However, this

1

 PermissionCollection pc;
chk: if ((pc = loaderPC.get(codeUrl)) == null) {
 pc = super.getPermissions(codeSource);
 if (pc != null) {
 ... // initializing "pc"
act: loaderPC.put(codeUrl,pc);
 }
 }
 return (pc);

WebappClassLoader.java

chk: while (!queue.isEmpty() && ...) {
act: CheaterFutureTask task = queue.

remove();
 incompleteTasks.add(task);
 taskValues.add(task.getRawCallable().
 call());
 }

BatchCommitLogExecutorService.java

chk: if (queryHandlers == null) {
act: queryHandlers =newCopyOnWriteArrayList
 <QueryHandler>();
 }
 ...
 if (!queryHandlers.contains(handler)) {
 queryHandlers.add(handler);
 }

QueryHandlerRegistryImpl.java

(a) A usage of ConcurrentHashMap in GlassFish (b) A usage of BlockingQueue in Cassandra (c) A usage of CopyOnWriteArrayList in CXF

Figure 1. Three instances of misused CHECK-THEN-ACT idioms of concurrent collections used in real-world applications.

reduces the scalability of the application, because the same
lock is used to protect all other access to the loaderPC

map. While this correctly prevents overlapping read and
write concurrent accesses, it also prevents concurrent read
access. In an application with predominantly read accesses,
the lock-based synchronization dramatically reduces the per-
formance. A much better approach is to use the compound
update APIs provided in the concurrent collections. In this
example, we can change the code to use Concurren-

tHashMap.putIfAbsent.
In this paper we present the first empirical study that

answers in-depth questions about the usage of CHECK-
THEN-ACT idioms on a large scale. Our corpus contains 28
widely-used open-source Java projects that use concurrent
collections. These projects comprise 6.4M non-blank, non-
comment source lines of code (SLOC). We implemented a
tool, CTADETECTOR, which uses a static analysis approach
to detect instances of misused idioms and a semi-automated
transformation approach to correct them. Using this data and
our tool, we answer four research questions:

RQ1: What are the commonly used CHECK-THEN-ACT
idioms in real-world programs? We found that in each
category of correctly used and misused idioms, there is one
idiom that clearly dominates the others.

RQ2: Which idioms are the most error-prone? We found
one single idiom, put-if-absent, for which the number
of misused instances is larger than the number of correctly
used instances.

RQ3: Do misused idioms result in real bugs? Are our
patches accepted by developers? We found 282 misused
instances (217 semantic and 65 performance-related). So far
we reported 155 bugs to developers, and they examined 90 of
them. The developers confirmed 60 of the examined buggy
instances as new bugs. For these confirmed bugs, the devel-
opers accepted the patches generated by CTADETECTOR.
The developers claim that the remaining instances do not
lead to real bugs because the buggy interleaving can not not
occur in practice, or the programs are resilient to such bugs.

RQ4: What is the evolution of programs w.r.t. CHECK-
THEN-ACT idioms? We found that across three major ver-

sions between 2007 to 2012, the number of both correct and
incorrect usages increase. However, in the later versions, the
percentage of incorrect usage decreases.

There are several implications of our findings. Program-
mers learn a new programming construct through both pos-
itive and negative examples. Our catalog of idioms teaches
them how to use CHECK-THEN-ACT idioms correctly. Along
with the hundreds of instances of idioms, it provides a
tremendous educational resource.

Second, library designers can use our findings to make the
APIs more robust or provide better documentation. Third,
the testing community can focus its effort to find CHECK-
THEN-ACT bugs in concurrent programs.

This paper makes the following contributions:
1. Catalog of idioms: To the best of our knowledge, we are
the first to catalog the incorrect usage of CHECK-THEN-ACT
idioms of concurrent collections.
2. Analysis of instances: By mining 28 projects, we uncover
282 misused and 545 correctly used instances of the idioms.
Using this data, we answer questions about popularity, error-
proneness, and evolution of idioms. This data lead to the
discovery of 60 new bugs, confirmed by the developers.
3. Tool for detection and correction: We implemented a
pattern-based static analysis tool, CTADETECTOR, to detect
misused CHECK-THEN-ACT idioms. To correct the misused
idioms, our tool uses an interactive program-transformation
approach.

All our data, bug reports, and the tool are available at:
http://mir.cs.illinois.edu/∼yulin2/CTADetector/

II. CATALOG OF IDIOMS

By default, most of the Java collection classes are
not thread-safe. Therefore, the j.u.c. package introduces
several thread-safe concurrent collections, e.g., Concur-

rentHashMap, BlockingQueue, and CopyOnWriteAr-

rayList. Before the introduction of j.u.c., a programmer
could create a thread-safe HashMap using a synchronized
wrapper (e.g., Collections.synchronizedMap(aMap)).
The synchronized HashMap achieves its thread-safety by
protecting all accesses to the map with a common lock. This
results in poor scalability when multiple threads try to access

2

http://mir.cs.illinois.edu/~yulin2/CTADetector/

(a)Value v = map.get(key);

 if(v == null){

 v = calc();

 map.put(key, v);

 ...

 }

(b)if(map.get(key) == null){

 v = calc();

 map.put(key, v);

 ...

 }

(c)Value v = map.get(key);

 if(v != null){

 ...

 return;

 }

 v = calc();

 map.put(key, v);

 ...

(d)if(map.get(key) != null){

 ...

 return;

 }

 v = calc();

 map.put(key, v);

 ...

(e)if(!map.containsKey(key)){

 v = calc();

 map.put(key, v);

 ...

 }

(f)if(map.containsKey(key)){

 ...

 return;

 }

 v = calc();

 map.put(key, v);

 ...

Figure 2. Put-if-absent idiom and its variations for Concur-
rentHashMap.

different parts of the map simultaneously, since they contend
for the same lock.

The concurrent collections include the API methods of-
fered by their corresponding non-thread safe counterparts. In
addition, they contain new APIs that encapsulate compound
update operations, and execute atomically, without resorting
to one common lock. Using the concurrent collections
over the synchronized collections offers dramatic scalability
improvements [7]. However, it is still possible to introduce
bugs when using concurrent collections.
Terminology: In this paper we use the term idiom to
refer to a recurring programming construct that developers
use when working with concurrent collections. Like design
patterns [9], the idioms abstract away the details from code.
We call an instance of an idiom a concrete incarnation of
the idiom in real code.

The widely-used CHECK-THEN-ACT idiom can be ex-
pressed as specific idioms for specific collections (e.g., put-
if-absent for ConcurrentHashMap). An idiom, can also
have syntactical variations (e.g., by using different API
methods), even for the same collection.

We classify an idiom as misused when it can result in
a non-atomic execution of the check and act operations
(semantic problems) or it is over-synchronized (performance
problems). In some cases, this can manifest as a disuse of
the atomic library APIs or an erroneous use, in others as
over-zealous synchronization. We simply call all of them a
misuse of the concurrent collection API.

In this section we present misused CHECK-THEN-ACT
idioms for individual collections and explain how these
idioms can lead to semantic or performance bugs. We
conclude the section by summarizing the common traits of
these idioms and correction strategies.

Value v = map.get(key);

if(v == null){

v = calc();

map.put(key, v);

...

}

v2 = ...;

...

map.put(key, v2);

Thread T1 Thread T2

Figure 3. An example of buggy interleaving for Fig. 2(a)

A. Misused CHECK-THEN-ACT in ConcurrentHashMap

ConcurrentHashMap is a thread-safe implementation of
HashMap. In addition, it contains three new APIs: putIfAb-
sent(key, value), replace(key, oldValue, new-

Value), and a conditional remove(key, value). For ex-
ample, putIfAbsent (1) checks whether the map contains
a given key, and (2) if absent, inserts the 〈key, value〉 entry.
This is a classic example of a CHECK-THEN-ACT idiom. The
library guarantees that these two steps are done atomically.

Next, we present the misused CHECK-THEN-ACT idioms
when using ConcurrentHashMap. Figure 2 presents exam-
ples of code where the programmer meant to use put-if-

absent semantics. Notice there are many variations. Fig-
ure 2(a) shows a temporary variable that is used to hold the
result of the check. The check statement can use either get
(Fig. 2(b)) or containsKey (Fig. 2(c)). Figure 2(e) and 2(f)
show variations where the check condition is reversed.
Notice that all of these variations have a put invocation that
is control dependent on a get or containsKey invocation
on the same map.

Next, we present one of the many atomicity violation
scenarios that can occur in the examples in Fig. 2(a). We
show it graphically in Fig 3. Suppose thread T1 finds that
the map does not contain the key, so it will calculate the
value and try to put it into the map. Before T1 puts, it is
suspended and another thread T2 puts a different value to the
same key. Then T1 resumes and executes its put operation.
Under this scenario, the 〈key, value〉 pair put by thread T2

will be overwritten by the put operation T1. This violates
the put-if-absent semantics of the original code.

Figure 4 and 5 show other misused CHECK-THEN-ACT
idioms. Unlike Fig. 2 where we show many syntactic varia-
tions of the same idiom, in the subsequent figures, we only
show one variation for each idiom.

Figure 4(a) shows that even when programmers use the
new putIfAbsent operation instead of the old put, they
still make mistakes. Notice that the code later uses the value
that the programmer assumed to be mapped with the key.
Now we describe an interleaving that results in an atomicity
violation. After T1 found that the map does not contain the

3

Value v = m.get(key);

if(v == null){

 v = calc();

 map.putIfAbsent(key, v);

}

return v;

(a) Put-if-absent idiom

with the use of putIfAbsent API

(1)Value v = map.get(key);

 if(v != null){

 v = map.remove(key);

 v.m();

 ...

 }

(2)Value v = map.get(key);

 if(v != null &&

 v.equals(v2)){

 map.remove(key);

 ...

 }

(c) Remove and conditional-

remove idiom

(1)Value v = map.get(key);

 if(v != null){

 v = calc();

 map.put(key, v);

 ...

 }

(2)Value v = map.get(key);

 if(v != null && v.equals(v2)){

 v = calc();

 map.put(key, v);

 ...

 }

(d) Replace and conditional-replace idiom

if(map.containsKey(key)){

 Value v = map.get(key);

 v.m();

 ...

}

(b) Get idiom of ConcurrentHashMap

Figure 4. Other CHECK-THEN-ACT idioms for ConcurrentHashMap.

key, it calculates the value v and stores it to a reference
that is later used. Before T1 executes the putIfAbsent

operation, thread T2 puts another value to the same key.
Then T1 resumes, and its invocation of putIfAbsent will
fail (since the key has been mapped by T2). The last
statement returns the reference to the stale value, which is
not in the map.

Figure 4(b) shows an idiom involving the get operation.
The code first checks that the map contains a given key, and
then invokes a method on the value mapped to this key. An
atomicity violation will occur when thread T1 finds that the
map contains the given key. Then T2 removes the key, and
subsequently, T1 dereferences a null value. The code will
throw a NullPointerException.

Figure 4(c) shows the idioms that remove elements. The
first idiom (Fig. 4(c-1)) removes a 〈key, value〉 pair if
the map contains the key, then subsequent statements use
the removed value. Suppose thread T1 finds that the map
contains the key. Before it removes this 〈key, value〉, it
suspends and T2 removes the same pair. When T1 re-
sumes, its remove invocation returns a null value. Thus
the subsequent statement that uses the value will throw a
NullPointerException.

The second idiom (Fig. 4(c-2)) is a typical conditional
removal. The code removes a 〈key, value〉 pair only if the
key is mapped to a specific value v2. The atomicity violation
occurs if T2 puts another value (say v3) to the same key,
after T1 passed the check, but before it removed the pair.
When T1 resumes, the condition v.equals(v2) no longer
holds, yet T1 still removes the pair.

Figure 4(d) shows idioms that replace existing elements.
These can be seen as complementary to put-if-absent

semantics, since they have a put-if-present semantics.
The atomicity violations will occur when thread T2 removes

while(!queue.isEmpty()){

 // or while(queue.size()

 // > 0)

 Element e = queue.poll();

 // or remove(), take()

 e.m();

 ...

}

(1)if(!list.contains(e)){

 list.add(e);

 }

(2)while(!list.isEmpty()){

 // or if(!list.isEmpty())

 Element e = list.remove(0);

 // or list.get(0);

 e.m();

 }

(a) Remove-if-not-empty

idioms for concurrent queues

(b) Add-if-absent and remove-if-not-

empty idioms for CopyOnWriteList

if(collection == null){

 collection =

 createCollection();

 collection.add(element);

 ...

}

(c) Lazy-initialization idiom

for concurrent collections

synchronized(map){

 Value v = map.get(key);

 if(v == null) {

 v = calc();

 map.put(key, v);

 ...

 }

}

(d) Over-synchronization idiom

Figure 5. CHECK-THEN-ACT idioms of other types.

the 〈key, value〉 pair while T1 passed the check, and is about
to perform the put. The second idiom (Fig. 4(d-2)) is a
typical conditional replace operation.

B. Misused CHECK-THEN-ACT in Queues

The j.u.c. package contains several thread-safe
implementations for working with queues. Concur-

rentLinkedQueue is a traditional FIFO queue. Its queue
operations do not block: if the queue is empty, the re-
trieval operation returns null. The package also provides
BlockingQueues to add blocking semantics to retrieval
and insertion operations. If a queue is empty, the retrieval
operation will block until an element is available.

Figure 5(a) shows the remove-if-not-empty seman-
tics. The code first checks whether the queue contains some
elements, and then it removes elements and uses them for
further actions. Notice that there are several variations: the
check statement can be an if or while statement, the check
operation can query the size of the queue (e.g., q.size()
!= 0 or !q.isEmpty) or peek inside to find elements. The
act statement could use poll, remove, take, etc.

Here we describe one scenario for atomicity violation.
Suppose the queue contains only one element and both
threads T1 and T2 check the condition and find it is not
empty. The thread that is the last to invoke the retrieval
operation will get a null value which makes the code throw
a NullPointerException.

C. Misused CHECK-THEN-ACT in Lists

The j.u.c. package contains a thread-safe implementa-
tion for working with lists. CopyOnWriteArrayList is a
data structure in which all mutative operations (e.g., add)
are implemented by making a fresh copy of the underlying
array. Iterators iterate over a snapshot view of the collection
at the point that the iterator was created.

4

Table I
THE SUMMARY OF CHECK-THEN-ACT IDIOMS. THE COLUMNS SHOW

WHAT IS CHECKED, AND THE ROWS SHOW WHAT IS ACTED UPON.

XXXXXXXAct
Check Reference Object state

Reference lazy-initialization (Fig. 5(c)) No examples
The state
pointed by the
checked object

non-null check [10] put-if-absent (Fig. 2, 4(a)),
get, remove, replace

(Fig. 4(b), 4(c), 4(d)),
add-if-absent(Fig. 5(b-1))

State other than
the one checked

N/A remove-if-not-empty
(Fig. 5(a), 5(b-2))

Figure 5(b) shows two idioms. The first idiom (Fig. 5(b-
1)) illustrates add-if-absent semantics. The code appends
an element to a list, if the list does not already contain it.
Two threads, T1 and T2 can both pass the check at the same
time, and they will append the same element twice.

The second idiom (Fig. 5(b-2)) illustrates the remove-

if-not-empty idiom, and the atomicity violation happens
under the same interleaving as shown in Sec. II-B

D. Misused CHECK-THEN-ACT in Lazy Initialization

The lazy-initialization idiom is also error-prone.
Figure 5(c) shows code that lazily creates a concurrent
collection when it is needed. However, code also adds some
elements into it. The atomicity violation will occur if both
T1 and T2 find the collection reference is null and initialize
it. In this case, one initialization will override the other. Now
the elements added by T1 are no longer seen by T2.

E. Over-Synchronization in CHECK-THEN-ACT

Figure 5(d) shows a put-if-absent idiom wrapped by
a synchronization block. Assuming that the other accesses to
the map are protected by the same lock, this code is properly
synchronized, thus the idiom executes atomically. However,
the synchronization degrades the performance: it prevents
threads who are working on different buckets of the map to
operate in parallel. This defies the entire purpose of using a
concurrent collection.

F. Summary of idioms

Based on the idioms we have described in previous
subsections, we summarize the properties of the CHECK-
THEN-ACT idioms that can lead to atomicity violations.

The check operation could query (i) the reference point-
ing to the collection (e.g., whether the reference is null), or
(ii) the state of the collection (e.g., whether a map contains
a given key).

The act operation could access (i) the reference pointing
to the collection, (ii) the state of the collection w.r.t. the
referenced object in the check (e.g., put a new 〈key, value〉
in the map using the previously checked key), or (iii) the
state of the collection disregarding any particular object used
in the check (e.g., removing all elements from a list).

Value v = map.get(key);

if(v == null) {

 v = calc();

Value tmpV = map.putIfAbsent(key, v);

if(tmpV != null)

v = tmpV;

}

... // variable v is used here

(a) Fix for put-if-absent idiom

Value v = map.get(key);

if(v != null) {

 v = map.remove(key);

if(v != null) {

 v.m();

 ...

 }

}

(b) Fix for remove idiom

Value v = map.get(key);

if(v != null) {

 v = calc();

Value tmpV = map.

replace(key, v);

if(tmpV != null) {

 ...

 }

}
(c) Fix for replace idiom

Value v = map.get(key);

if(v != null) {

 v.m();

 ...

}

(d) Fix for get idiom

while(!queue.isEmpty()) {

 Element e = queue.poll();

if(e != null) {

 e.m();

 ...

 }

}

(e) Fix for idiom of queue

Figure 6. Fixes for CHECK-THEN-ACT idioms.

Thus, there are 6 combinations of check and act oper-
ations. Table I groups all the previous idioms into these 6
combinations, using the above classification. Notice that one
cell is not applicable, another cell is applicable - though we
did not find examples in the projects that we studied, and for
one cell we did not find examples, though there are examples
in the literature [10] (e.g., if the object is not null, invoke
a method on it).

Developers or researchers could use our Tab. I to man-
ually look for CHECK-THEN-ACT atomicity violations in
their code or to design bug detection tools. Though we
have observed the check and act operations on instances
of collections, similar operations can appear on arbitrary
objects that are accessed concurrently.

G. Correction

We can use two ways to correct the atomicity violations
caused by misused CHECK-THEN-ACT idioms: (1) lever-
aging the proper atomic API provided by the concurrent
collections, or (2) adding a synchronization block around
the CHECK-THEN-ACT code.

Figure 6 shows the strategies that we use to fix the
misused CHECK-THEN-ACT idioms. We underlined the state-
ments that we add or change. For the idioms that have put-
if-absent semantics, we use the putIfAbsent operation
instead of put. When the code further reads the value
placed in the map, our fix ((Fig. 6(a)) checks the status
of the putIfAbsent to judge whether the assumed value

5

was indeed placed in the map (putIfAbsent returns null
to indicate successful execution). Note that for put-if-

absent idiom with the use of putIfAbsent method, our
fix also checks the status of the putIfAbsent.

In the fixes in Fig. 6(b), 6(c) and 6(e), CTADETECTOR
adds code to check the return value of the act operation,
thus preventing NullPointerExceptions. For the get

idiom in Fig. 4(b), we replaces the use of containsKey

with checking whether the mapped value is not null.
Note that we do not show the fixes for the add-if-

absent and lazy-initialization idioms. The fix for
the former is similar to put-if-absent, while the fix
for the latter is wrapping the idiom with a proper syn-
chronization block. To fix the performance bugs because
of over-synchronization, CTADETECTOR removes the lock
and uses the corresponding compound update API method.
For example, in Fig. 5(d), CTADETECTOR removes the
synchronization and uses putIfAbsent instead of put.

III. ANALYSIS OF IDIOM INSTANCES

In this section we answer four research questions:
• RQ1: What are the commonly used CHECK-THEN-ACT

idioms in real-world programs?
• RQ2: Which idioms are the most error-prone?
• RQ3: Do misused idioms result in real bugs? Are our

patches accepted by developers?
• RQ4: What is the evolution of programs w.r.t. CHECK-

THEN-ACT idioms?
RQ1 and RQ2 help us, library designers, and tool builders

learn about the state of the practice. RQ3 evaluates whether
the found misused idioms are critical for the correctness or
performance of real world programs. RQ4 shows whether
developers pay more attention to CHECK-THEN-ACT idioms.

A. Experimental setup

Subjects: To answer the first three research questions, we
used a corpus of 28 real-world open-source programs. The
first three columns of Table II show the subject programs,
the version number, the size – in non-blank, non-comment
source lines of code (SLOC)1, and the domain of application.
All programs use concurrent collections. For each program,
we use the most current version.

To study the evolution of the programs (RQ4), out of the
initial corpus, we selected those projects that had multiple
releases between 2007 and 2012. This created a corpus of 18
programs. For each program, we chose three major releases:
V3 – the most current release (as shown in Tab. II), V2 –
a major release from 2010–2011, and V1 – a major release
from 2007–2009.
Process: We ran our tool, CTADETECTOR, over our corpus.
CTADETECTOR classified idioms as correct or misused. The
latter contains semantic or performance issues. We manually

1as reported by the SOURCECOUNTER [11] tool

	

PIA$
78%$

Rem$
3%$

Rep$
1%$

Get$
11%$

Queue$
1%$

COWL$
5%$

LI$
1%$

(a)ThedistribuAonofmisused$idioms.$
The$total$numberis282.$

PIA$

27%$

Rem$

8%$
Rep$

2%$
CRem$

6%$
CRep$

2%$

Get$

46%$

Queue$

1%$

COWL$

5%$

LI$

3%$

(b)ThedistribuConofcorrect$idioms.$
The$total$numberis545. $

Figure 7. The distribution of idioms. (PIA: put-if-absent, Rem:
remove, Rep: replace, CRem: conditional-remove, CRep:
conditional-replace, Get: get, Queue: idioms for queues,
COWL: .idioms for lists, LI: lazy-initialization)

verified the results and sorted them based on the idioms that
we introduced in Sec. II.

To confirm whether the misused idioms result in real bugs,
we reported 155 instances to the open-source developers.
Our companion website [12] contains links to our bug
reports. Along with the bug description, we also submitted
a patch generated by CTADETECTOR. When developers
reported that a misused idiom does not result in a real
bug, we further asked them to elaborate why the atomicity
violation in the idiom is acceptable for their program.

To answer the evolution question we compare the number
of correct and misused instances of idioms along the three
major releases.

B. Results

RQ1: What are the commonly used CHECK-THEN-
ACT idioms in real-world programs?

Fig. 7 shows the distribution of correct and misused
idioms across the corpus of 28 projects. CTADETECTOR
found 282 instances of misused idioms and 545 instances of
correct idioms.

Notice that in each category, there is one idiom that clearly
dominates the others: the put-if-absent idiom is the most
common misused idiom, while get is the most common
correctly used idiom. It is also surprising that the top four
idioms in each category are different.

Our result shows that 93% (259) of the misused instances
and 90% (492) of the correct instances appear when using
ConcurrrentHashMap. This is expected: (i) a previous
study [8] shows that ConcurrrentHashMap is the most
widely used concurrent collection in Java, and (ii) Concur-
rrentHashMap stores 〈key, value〉 pairs so it offers a richer
API than other collections, thus there are more choices to
compose operations.

RQ2: Which idioms are the most error-prone?
Columns 5–13 in Tab. II show the number of misused

and correct instances of idioms for each program. With

6

Table II
CHECK-THEN-ACT IDIOMS IN REAL-WORLD PROGRAMS.

Subject Name SLOC Description PIA Rem Rep CRem CRep Get Queue COWL LI
m c m c m c m c m c m c m c m c m c

Annsor 1.0.3 1605 Annotation runtime processor 1 - - - - - - - - - - - - - - - - -
Apache Cassandra
1.1.1

132183 Distributed database 3 5 - 1 - - - - - - 2 8 1 1 - - - -

Apache CXF 2.6.1 441269 Open source services frame-
work

5+4 9 - 1 - - - 1 - - 3 8 - 1 2 6 1 2

Apache Lucene
4.0.0

361494 Text search engine library 1+2 1 - - - - - - - - - 4 - - - - - -

Apache Mina 2.0.4 46435 Network application frame-
work

2+2 2 - - 1 - 1 - 1+1 - - 5 - 1 - - - -

Apache Struts 2.3.4 146919 Web applications framework 5+1 2 - - - 1 - 3 - 1 - 1 - - 1 - - -
Apache Tomcat
7.0.28

215298 Servlet container 2 5 - - - - - - - - 2 10 - 2 - - 1 -

Apache Trinidad
2.0.1

220484 JSF framework 14+2 5 - 2 0+1 - - 1 - - 1 8 - - - - - 4

Apache Wicket
1.5.7

169142 Java web framework 10 3 - - - - - - - - - 7 - - 1 - - -

BlazeDS 4.0.1 68887 Web messaging technology 1+3 2 2 3 - - - - - - 6 11 - - 1 16 - 9
Carbonado 1.2.3 54254 Persistence abstraction layer 2 2 - - - - - 2 - - - 2 - - - - - -
CBB 1.0 17001 Concurrent Building Blocks 4 - - - - - - - - - - - - - - - - -
DWR 1.1 35630 Ajax for Java 1 10 - 1 - - - - - 1 - 3 - - - - - -
Ektorp 1.1.1 10112 Java API for CouchDB 4 - - - - - - - - - - - - - - - - -
Flexive 3.1.6 139011 Content management system 10+2 8 - - - 4 - - - 1 2 2 - - 0+1 - - -
Glassfish 3.1 721944 Application server 5+6 11 2 7 - - - 1 - - 2 33 - 1 1 - 1 1
Granite 2.3.2 41790 Data Service 5+2 14 - 1 - - - - - - - 10 - - - - - -
Hazelcast 2.0.4 89080 Data distribution platform 14+3 13 - 4 - - - 3 - - 2 39 - - - - - -
Ifw2 1.33 55596 Web application framework 2 5 - - - - - - - - 2 1 - - - - - -
JBoss AOP 2.2.2 196106 Aspected oriented framework 11+6 11 - - - - - - - - - 10 - - - - - -
JSefa 0.9.3 18173 Object serialization library 1+2 3 - - - - - - - - - 2 - - - - - -
Memcache 6695 Memory object caching sys-

tem
6 - - 1 - - - - - 1 2 8 - - - - - -

Open EJB 4.0.0 286451 EJB container 6+5 2 2 4 - - - 2 - - 4+1 5 - - - - - -
Open JDK 8 2262000 Java development kit 8 19+3 24 - 8 - 6 - 16 - 5 - 19 1 - 1 2 1 -
RestEasy 2.3.4 123813 JAX-RS client framework 11 4 - - - - - 2 - - - 9 - - - - - -
Tersus 113260 Visual programming platform 1 1 - - - - - - - - - - - - - - - -
Vo Urp 29954 Data models translator 3 1 - - - - - - - - - - - - - - - -
Zimbra 448573 Collaboration server 14+12 3 2 11 0+2 - - 2 - - 0+2 44 - 2 3+2 3 - 2

Total 6453159 163+55 146 8 44 1+3 11 1 33 0+1 9 28+3 249 2 8 10+3 27 4 18

For each idiom, the column m and c represent the misused and correctly used instances. For the misused instances, the number on the
left of plus sign shows semantic issues, whereas the number on the right shows performance bugs (where applicable). The columns 4
to 12 represent put-if-absent, remove, replace, conditional-remove, conditional-replace, get idioms, idioms
for queues, CopyOnWriteList and lazy-initialization.

the exception of the put-if-absent idiom, notice that
the number of correct instances outweighs the misused
instances to a large extent for most projects. This means
most developers are aware of how to correctly use the
concurrent collections, but may make mistakes occasionally.

For put-if-absent idiom, the number of misused in-
stances is larger than the number of correct instances. This
shows that this idiom is the most error-prone. However, as
we show in RQ3, not all misused instances are perceived as
buggy by the developers.

For the misused idioms, we show the number of instances
as the sum of two numbers: the first shows semantic bugs,
the second shows performance issues. Tab. II shows 65
instances of idioms where the developers wrapped the
CHECK-THEN-ACT within a synchronized block. However,
this is over-synchronization, and we classify these instances
as performance bugs. This shows that some developers
know there are atomicity violations in the idioms, but they
add synchronization to avoid them, instead of using the

atomic APIs from the concurrent collections. In contrast,
CTADETECTOR correctly suggests patches that involve
the atomic APIs, as discussed in Section II-G. This can
dramatically improve the performance.

RQ3: Do misused idioms result in real bugs? Are our
patches accepted by developers?

In our corpus of projects, we selected the 17 most active
projects. We reported the misused idioms and also provided
the patches generated by CTADETECTOR. For some large
projects like GlassFish, we did not report all the misused
idioms that are detected by CTADETECTOR, but only those
for the major components.

For the 17 projects that we contacted so far, we reported
155 bugs. However, we only got replies from the developers
of 11 projects. Table III shows these 11 projects, along with
the number of bugs we reported and were replied in each
project (column 2), and the number of bugs confirmed by
developers (column 3). The bugs that are confirmed include

7

Table III
BUG CONFIRMATION FROM THE DEVELOPERS: 49 SEMANTIC BUGS AND

11 PERFORMANCE BUGS.

Subject Name Replied Bugs Confirmed Fixed Version
Apache Cassandra 6 5 1.1.2
Apache CXF 15 15 2.7.0
Apache Mina 5 5 2.0.5
Apache Struts 7 2 2.3.5
Apache Tomcat 5 4 7.0.30
Apache Trinidad 1 0 -
Apache Wicket 11 11 1.5.8
Glassfish 8 6 4.0
GraniteDS 7 7 3.0.0 beta1
OpenJDK 14 0 -
RestEasy 11 5 2.3.5
Total 90 60

49 semantic and 11 performance bugs. The developers of 9
projects accepted our patches and included the patches in
the new versions. Last column shows the version numbers
that include our patches.

As shown in Table III, not all of the misused idioms lead
to bugs, although two thirds of the instances cause buggy
behaviors in the programs. For the remaining one third of
our reported misused idioms, the developers do not think
these result in buggy behaviors.

The reasons that the developers provided can be divided
into three categories:
1. Impossible interleaving: The buggy interleaving that we
described in Section II does not happen in the application
context. This can be due to two reasons. First, the code
containing the idiom is never executed concurrently (e.g.,
this was one case in Cassandra). This was surprising to
us, since this defies the whole reason of using a concur-
rent collection. However, it could be that only some code
snapshots that use an instance of a concurrent collection
are executed concurrently, or it could be that developers
envision some future evolution where the code will indeed
run concurrently. Second, the conflicting operation never
executes concurrently. For example, in Tomcat, in one put-
if-absent instance, at any given moment, there is only one
thread that puts a value in the map.
2. Unique values: For some ConcurrentHashMap usages,
the program uniquely calculates one single value for a
given key. That is, the value is either a singleton object [9],
or the program can calculate several value objects for the
same key, but they are in the same equivalence class. Thus,
for the put-if-absent idiom, even if the value written
by one thread is overwritten by another thread, since the
two values are equivalent, the idiom does not lead to bugs.
In Open JDK 8, there are 13 cases when the values are
uniquely calculated from the keys.
3. Program resilience: The program does not care whether a
value written by one thread is overwritten by another thread.
For instance, in Apache Struts, there is one case when the

Table IV
THE EVOLUTION OF IDIOMS

`````````Instances
Version

V1 V2 V3

misused (m) 112 156 201
correct (c) 152 253 418
m/(m+c) 0.42 0.38 0.32

ConcurrentHashMap is used as a cache. Even if the value
is overwritten and no longer in the map, it can still be used
without affecting the behavior. For lazy-initialization
idiom, there is a case in GlasshFish where even if the
values put into the map are lost, those values will be created
and put again by other threads.

Discussion: In the above cases, the race conditions in the
idioms are benign and can improve the performance (e.g.,
put is faster than putIfAbsent). Notice that reasoning
about such cases requires deep understanding of the domain
and the concurrency model of the program. This is usually
beyond the capabilities of tools and is better left to human
expert judgement. This is exactly the reason why CTADE-
TECTOR is interactive, allowing the human expert to judge
whether the misused idiom is really a bug.

However, developers should carefully check the semantics
of the programs to make sure they use an idiom correctly,
since as our result shows, 67% of misused instances lead to
real bugs. Furthermore, the developers should document the
invariants that ensure correctness. This can prevent future
versions running afoul precisely because of these bugs. In
the 30 instances that developers did not considered real
bugs, they documented only one such invariant.

RQ4: What is the evolution of programs w.r.t. CHECK-
THEN-ACT idioms?

For the 18 projects that have multiple major releases,
Table IV shows the total number of instances of idioms
across three major releases. Notice that the number of
instances increases for both misused and correctly used id-
ioms. This means that developers are embracing concurrent
collections. This is consistent with our recent finding [5]
that shows that many developers are embracing multicore
parallel programming.

Interestingly, the ratio of misused instances (as shown
by the last row) decreases in later versions. This shows
that developers pay more attention to the correct usage of
CHECK-THEN-ACT idiom. Possible explanations are that as
time goes by, programmers have more resources to learn how
to use the concurrent collection correctly, or they found such
bugs in production.

IV. ANALYSIS INFRASTRUCTURE

In this section we describe our approach to automatically
detect and correct the CHECK-THEN-ACT idioms that we
listed in Sections II–III. Subsection IV-A presents the de-
tection and correction approach.

8



A. Idiom detection and correction

We implemented both the detection and correction in a
tool, CTADETECTOR, on top of Eclipse Java development
tools (JDT) [13]. When CTADETECTOR finds a match
between the source code and the idioms, it reports the
detected idiom as well as the source code location.

To detect idioms, we employ a static code analysis that
uses syntactical and semantical information to match condi-
tional statements from the source code of a program to the
idioms we presented in Section II.

The analysis visits all the conditional statements (i.e., if
and while) in a program. For each conditional statement,
the analysis iterates over all the idioms and tries to determine
a match. To determine a match, the analysis needs to verify
whether: (i) the conditional expression matches the check

part of the idiom, (ii) the conditional statement operates over
an instance of a concurrent collection, and (iii) the body of
the conditional statement matches the act part of the idiom.

Next, we illustrate how the analysis matches one of the
idioms, namely the put-if-absent from Fig. 2(e). First,
the analysis checks the expression used in the if’s condition.
This means determining whether (a) the code invokes the
containsKey (b) the condition is negated.

Second, the analysis checks whether if statement oper-
ates over an instance of ConcurrentHashMap. To do this,
the analysis gets the type information of a variable from the
static type binding (this determines that the variable is an in-
stance of Map) and the variable initialization statement (this
determines that the map variable is initialized with a Con-

currentHashMap). Note that we use an inter-procedural
analysis to find out whether a variable is initialized with a
concurrent collection.

Third, the analysis checks whether (a) the body statements
invoke the put method (b) the put is invoked on the
same ConcurrentHashMap object used in the condition
expression, and (c) it places in the map the same key object
that was used in the condition expression.

To correct the reported misused idioms, CTADETECTOR
uses the fixes that we presented in Subsect. II-G. We
implemented the correction on top of Eclipse’s AST rewrit-
ing engine. Notice that we take an interactive approach:
the programmer can inspect the report, and if she agrees
that it is indeed a problem, she can choose to apply the
correction transformation that CTADETECTOR suggests. For
each suggested transformation that tool shows a preview of
the code before and after the transformation. The companion
website shows screenshots.

B. Discussion

Despite the fact that our approach is pattern-based, it
is quite effective and efficient. Here we discuss several
potential improvements, that we decided not to include since
they will not necessarily improve the analysis.

1. CTADETECTOR only performs an intra-procedural idiom
matching, thus it may miss cases when the check and act op-
erations are in different methods. For example, for the idiom
shown in Fig. 2(e), the if(!map.containsKey(key)) and
map.put(key, v) may be in different methods. However,
in the 28 projects we used in our empirical evaluation, we
manually found only one single case (in Apache Mina) that
needs inter-procedural analysis. That means intra-procedural
analysis can detect most of the misused idioms.
2. CTADETECTOR uses static type binding information
collected at compile time to determine whether a variable
represents a concurrent collection object or whether two ar-
guments are the same. However, using the static type binding
information can be inaccurate since the variables may be
reassigned and point to different objects between check and
act operations. In this case, we need points-to analysis to
determine whether two variables point to the same object.
However, in the 28 projects we used, there is only one case
(in OpenJDK 8) in which a variable may either point to a
HashTable or a ConcurrentHashMap, depending on some
conditions. In all other cases, a local variable or a field used
in check or act operations is never changed. Thus, using
points-to analysis will only have modest improvements.

V. RELATED WORK

We organize the related work into: (i) empirical studies
for concurrent programming, (ii) detection of atomicity
violations, and (iii) pattern-based program analysis.

Empirical study for concurrent programs. Lu et al. [10]
categorized concurrency bug types by analyzing a large
number of bug reports from open-source repositories. They
list one of the six types of atomicity violations that we
classify in Tab. I. In a followup work [14] they also describe
bugs that manifest as performance slowdowns in concurrent
programs. Schaefer et al. [15] showed several examples of
how sequential refactorings can break concurrent programs.

We have previously conducted an empirical study [5] on
how developers from thousands of open-source projects use
Microsoft’s Parallel Libraries. One of the findings was that
some library constructs are error-prone. Also, our previous
work [16] on automated refactoring to introduce concurrent
library constructs showed that manual refactorings from
HashMap to ConcurrentHashMap are error-prone.

Our current work focuses on the study of how program-
mers misuse concurrent collections.

Atomicity checking techniques. Several researchers pro-
posed dynamic [6], [17]–[20] or static techniques [21]–[23]
to check atomicity violations in concurrent programs. Some
approaches require programmers to provide test drivers, but
constructing test drivers for large applications is time con-
suming. Others require programmers to write annotations,
but industry programmers are reluctant to write annotations.

Among these techniques, COLT [6] is a recent dynamic
tool that checks the atomicity of composed operations from

9



Java concurrent collections. COLT found 41 problematic
atomicity violations in 25 open-source projects. For the same
projects used in COLT’s evaluation, CTADETECTOR found
178 violation instances, from which we reported 85, and 55
of them are confirmed to be new bugs.

Pattern-based analysis. Pattern inference and identifica-
tion is also a widely used approach to improve software
quality. AVIO [24] and Falcon [25] analyze the access
patterns of variables to detect or locate concurrency bugs.
FindBugs [26] detect bugs by statically matching the bug
patterns to programs. The current version of FindBugs only
considers one single variation out of our nine idioms. Yu et
al. [27] exploit interleaving idioms to test concurrent pro-
grams. Uddin et al. [28] infer temporal API usage patterns
that can be used to improve the API design and usage.
Wendehals and Orso [29] proposed a dynamic technique
to recognize design patterns in the programs. However, our
work focuses on the patterns of concurrent collection usage.

VI. CONCLUSIONS

Some programmers erroneously think that just by using
thread-safe concurrent collections their code is thread-safe.
Our study of 28 projects reveals nine common CHECK-
THEN-ACT idioms that can result in atomicity violations.
We found that the distribution of correct and misused
idioms is not the same, which means that some idioms
are more error-prone than others. This finding is important
for library designers who can design more resilient APIs.
It also provides educational value for developers who use
concurrent collections.

Using this corpus and our tool, CTADETECTOR, we
found 282 buggy instances. The developers examined 90
of them and confirmed 60 as new bugs, and applied our
patch. While they confirmed 67% of the examined bugs, they
claim that the remaining do not result in bugs. This reasoning
requires deep understanding of the domain and concurrency
model. We hope that our study motivates other follow-up
studies to fully understand these bugs and eradicate them.

Acknowledgments: We would like to thank Darko Marinov,
Milos Gligoric, Stas Negara, Semih Okur, Cosmin Radoi,
Caius Brindescu, Mihai Codoban, Shanxiang Qi, Wonsun
Ahn, and the anonymous reviewers for their feedback on
earlier versions of this paper. This research is partly funded
through NSF CCF-1213091 and CCF-1219027 grants, a gift
grant from Intel, and the Intel-Illinois Center for Parallelism
at the University of Illinois at Urbana-Champaign. The
Center is sponsored by the Intel Corporation.

REFERENCES

[1] “Task Parallel Llibrary (TPL),” http://msdn.microsoft.com/
en-us/library/dd460717.aspx.

[2] “Collections.Concurrent (CC),” http://msdn.microsoft.com/
en-us/library/dd997305.aspx/.

[3] “Threading Building Block (TBB),” http://
threadingbuildingblocks.org.

[4] “Java Concurrent Library,” http://docs.oracle.com/javase/7/
docs/api/java/util/concurrent/package-summary.html.

[5] S. Okur and D. Dig, “How do developers use parallel li-
braries?” in FSE, 2012.

[6] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev,
and E. Yahav, “Testing atomicity of composed concurrent
operations,” in OOPSLA, 2011.

[7] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and
D. Holmes, Java Concurrency in Practice, 2005.

[8] W. Torres, G. Pinto, B. Fernandes, J. a. P. Oliveira, F. A.
Ximenes, and F. Castor, “Are Java programmers transitioning
to multicore? A large scale study of Java FLOSS,” in TMC,
2011.

[9] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides,
“Design patterns: Abstraction and reuse of object-oriented
design,” in ECOOP, 1993.

[10] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-
takes: a comprehensive study on real world concurrency bug
characteristics,” in ASPLOS, 2008.

[11] “SourceCounter,” http://code.google.com/p/boomworks/wiki/
SourceCounterEN.

[12] http://mir.cs.illinois.edu/∼yulin2/CTADetector.
[13] “JDT,” http://www.eclipse.org/jdt/.
[14] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understand-

ing and detecting real-world performance bugs,” in PLDI,
2012.

[15] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, and F. Tip,
“Correct refactoring of concurrent java code,” in ECOOP,
2010.

[16] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential
Java code for concurrency via concurrent libraries,” in ICSE,
2009.

[17] D. Weeratunge, X. Zhang, and S. Jaganathan, “Accentuating
the positive: atomicity inference and enforcement using cor-
rect executions,” in OOPSLA, 2011.

[18] C.-S. Park and K. Sen, “Randomized active atomicity viola-
tion detection in concurrent programs,” in FSE, 2008.

[19] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” in ASE, 2000.

[20] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu, “Finding and reproducing heisenbugs in
concurrent programs,” in OSDI, 2008.

[21] C. Flanagan and S. Qadeer, “A type and effect system for
atomicity,” in PLDI, 2003.

[22] C. von Praun and T. R. Gross, “Static detection of atomicity
violations in object-oriented programs,” in Journal of Object
Technology, 2003.

[23] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization
constraints with data in an object-oriented language,” in
POPL, 2006.

[24] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: detecting
atomicity violations via access interleaving invariants,” in
ASPLOS, 2006.

[25] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: fault
localization in concurrent programs,” in ICSE, 2010.

[26] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in
OOPSLA, 2004.

[27] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple:
A coverage-driven testing tool for multithreaded programs,”
in OOPSLA, 2012.

[28] G. Uddin, B. Dagenais, and M. P. Robillard, “Analyzing
temporal API usage patterns,” in ICSE, 2011.

[29] L. Wendehals and A. Orso, “Recognizing behavioral patterns
at runtime using finite automata,” in WODA, 2006.

10

http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd997305.aspx/
http://msdn.microsoft.com/en-us/library/dd997305.aspx/
http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
http://code.google.com/p/boomworks/wiki/SourceCounterEN
http://code.google.com/p/boomworks/wiki/SourceCounterEN
http://mir.cs.illinois.edu/~yulin2/CTADetector
http://www.eclipse.org/jdt/

	Introduction
	Catalog of Idioms
	Misused =check-then-act in =ConcurrentHashMap
	Misused =check-then-act in Queues
	Misused =check-then-act in Lists
	Misused =check-then-act in Lazy Initialization
	Over-Synchronization in =check-then-act
	Summary of idioms
	Correction

	Analysis of idiom instances
	Experimental setup
	Results

	Analysis Infrastructure
	Idiom detection and correction
	Discussion

	Related Work
	Conclusions
	References

