
Are Web Applications Ready for Parallelism?

Cosmin Radoi
University of Illinois

cos@illinois.edu

Stephan Herhut
Intel Corporation
stephan@herhut.eu

Jaswanth Sreeram
Intel Corporation

jaswanth.sreeram@intel.com

Danny Dig
Oregon State University

digd@eecs.oregonstate.edu

Abstract
In recent years, web applications have become pervasive.

Their backbone is JavaScript, the only programming language
supported by all major web browsers. Most browsers run on
desktop or mobile devices with parallel hardware. However,
JavaScript is by design sequential, and current web applications
make little use of hardware parallelism. Are web applications
ready to exploit parallel hardware?

To answer this question we take a two-step approach. First,
we survey 174 web developers regarding the potential and
challenges of using parallelism. Then, we study the performance
and computation shape of a set of web applications that are
representative for the emerging web. We identify performance
bottlenecks and examine memory access patterns to determine
possible data parallelism.

Our findings indicate that emerging web applications do
have latent data parallelism, and JavaScript developers’ pro-
gramming style are not a significant impediment to exploiting
this parallelism.

1. Introduction
Parallel hardware has become a reality of modern comput-

ing and its use is no longer confined to high performance
applications and super computing. Even mobile phones now
regularly feature multi-core CPUs and programmable GPUs.
SIMD (Single Instruction, Multiple Data) extensions add further
to the mix of exploitable hardware parallelism. Creating the best
possible experience on any device therefore requires tapping
into parallel hardware’s potential to increase performance, save
energy, or even both.

Most traditional platforms and languages have developed
tools and language extensions to help developers adapt their
code to run on modern parallel hardware. Yet, HTML5, an
emerging web-based application ecosystem that promises porta-
bility across devices and form factors, and its implementation
language JavaScript, seem still to be stuck in the sequential
past. While browser vendors have invested heavily into the
sequential performance of their JavaScript engines and added
some support for concurrency [9], support for parallelism is still
in its infancy. Parallel JavaScript [23] and WebCL [10] are two
proposals to extend JavaScript to support parallel programming
but neither is widely used. While this can be attributed to their
prototypical implementation, the question remains: Are web
applications ready for parallelism?

Earlier work by Fortuna et al. [16] has found that typical web
applications have potential for achieving significant speedup
from concurrent execution. This is encouraging but most of

the potential they found stems from independent tasks rather
than loops. Therefore it would be hard to exploit it using
massively data-parallel hardware like GPUs or SIMD. Even
more, Richards et al. [29] have studied the runtime behavior of
typical JavaScript applications and found wide spread use of
dynamic language features, which hinder execution on restricted
hardware like GPUs and SIMD units. Both findings suggest
that, while there is some potential for task parallelism, the web
is not a fertile ground for data parallel programming.

While this conclusion might be true for the web of the
past, our hypothesis is that it does not apply to the emerging
web of applications. With the shift of the web to an era of
application centric usages like, for example, image editing,
augmented reality applications and sophisticated gaming, the
characteristics of executed code change, too. As these usages
are more compute intense, they also are more likely to gain
from data-parallel compute capabilities. Even more, due to the
increased focus on application logic over just rendering content,
we also expect other high-level code properties, like use of
dynamic language features, to change. Lastly, a new generation
of programmers might also bring different programming styles
to the table, e.g., due to influences from more declarative
programming patterns during their education.

Of course, measuring such a trend in its early phases is
difficult. Most production-quality web sites are still built in
a legacy style and new applications are only beginning to
emerge. Analyzing currently-popular web sites would bias our
results towards what works well on most platforms now, not
the workloads that are missing precisely because they would
require more performance. Thus, in contrast to earlier studies,
we had no adequate top-100 list or similar to draw from. Instead,
we chose to measure the change where it starts: with the shift
in developers’ opinion.

We have asked 174 web developers about their coding
practice and about properties of the code they write. Fur-
thermore, we have asked them to predict what the emerging,
compute intense applications of the future web will be. As a
general trend, we found that applications formerly at home
on the desktop are predicted to transition to the web. With
the flattening of per-core performance improvement, desktop
applications have become increasingly parallel in the last few
years. We expect that their web counterparts will also need to
be parallel in order to be competitive.

To measure the first effects of that transition we, in a
second step, do a case study of 12 workloads. We selected the
workloads from the categories mentioned by the developers
and analyzed them for latent data parallelism. In particular, we

6212

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41915
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

this paper won the IBM Best Paper Award



were interested in the presence of parallelizable loops and their
approximate percentage of execution time. We also looked at
further code properties, like use of dynamic language features
and more declarative abstractions like map and reduce. Our
findings differ from earlier work and we found a surprisingly
large quantity of compute intense loops of which many were
latently parallel.

This sanity check of developers’ opinions against real world
code has furthermore revealed an interesting trend: while
developers prefer abstract declarative code they still often opt
for imperative solutions in practice.

In short, this paper contributes a study on latent parallelism
in emerging web applications using:
• a survey of developer opinions on their coding practice and

trends in future web applications. We found that JavaScript
developers generally embrace the functional nature of the
language, while generally avoiding some advanced features
like polymorphic variables. They generally hold the view
that more desktop applications will migrate towards the
web in the future.

• a tool for finding and analyzing latent data parallelism in
JavaScript loops.

• a case study of latent data parallelism in 12 emerging web
applications. We found that many of them do have latent
data parallelism.

• a discussion of the results of our survey and study and
their implications for various audiences: library and tool
developers and researchers, web browser engine developers,
and JavaScript developers.

A poster introducing the survey appeared in PPoPP’15 [28],
and the technical report presents more in-depth details [27].

The remainder of the paper is structured as follows. Section 2
discusses the design and methodology of our survey, and
presents key results. We back up those results by findings from
a set of case studies. Section 3 describes the methodology
for the case studies, including the performance analysis tool.
Section 4 presents the case studies findings. We put the results
in context and discuss their implications in Section 5. Finally,
Section 6 describes related work.

2. JavaScript in practice : a survey
Previous work in characterizing usage of JavaScript [29] in

practice has focussed on analyzing the most popular websites
or analyzing benchmark suites. Our goal in this work is to
understand both how JavaScript developers use the language
and what they perceive as important trends. Their practice and
opinions indicate whether parallelism is needed in JavaScript,
and, if it is, which is the best way to achieve it.

We formulated a questionnaire consisting of 20 questions.
The questions broadly fall into four categories: trends in
web applications, programming style, preferred tools and
frameworks, and perceived performance bottlenecks. There
are both multiple choice and open-ended questions Several of
the multiple-choice questions were followed by an open-ended
question asking the developer to explain his choice.

We publicized this questionnaire using social media. We
requested a few influential developers in the JavaScript com-
munity to tweet a link to this questionnaire. We also posted a
link to this questionnaire to the JavaScript section of reddit, a
popular social news website.

We received a total of 174 distinct responses to the ques-
tionnaire. To ensure that we obtain a representative sample
of JavaScript developers, we intentionally did not target the
developers of any particular company, but rather publicized
the survey broadly. Also, from our demographics questions we
learned that our respondents use a wide variety of libraries,
IDEs, and compile-to-JavaScript languages, thus we believe
our population is representative. We summarize our findings
below, but the detailed question and answer reports are available
publicly at http://cos.github.io/js-ceres.

2.1. Future trends in web applications
A principal goal of our study was to understand what

JavaScript developers think the most popular web applications
of the future will be. Previous works on characterizing real-
world JavaScript applications have drawn on two sources:
benchmark suites such as Sun Spider, Kraken and the V8
suite, and scripts served by the most popular websites [1].
Richards et al. [29] conclude that the popular benchmark suites
are poor representations of real-world JavaScript programs
along several metrics. We argue that the programs taken from
the most popular websites are also ill-suited to our goal of
understanding the future of web applications.

Firstly, the programs from the popular websites are required
to support a diverse set of browsers and hardware which restricts
both the functionality that they implement as well as the user
experience they deliver. Many JavaScript and HTML5 features
are, as of this work, still under consideration of the standards
bodies. This means that browsers are not required to support
them and moreover different browsers may support different
subsets of the proposals. Mainstream web applications that
must work on a variety of browsers therefore may not utilize
these features.

Secondly, being usable across diverse platforms also means
that websites have to be conservative about the client hardware.
For this reason, features or user experiences that require a
significant computational horsepower are uncommon. For these
reasons we hypothesize that popular websites are typically not
early adopters of emerging language and API features.

Our survey asked the developers: “In your opinion, what
new kinds of applications will trend on the web over the
next 5 years?”. We hand-coded their answers using qualitative
thematic coding [14]. We developed a set of codes that we
validated by achieving an inter-rater agreement of over 80% for
20% of the data. Two coders, the second and the third authors,
developed the categories which were not known a-priori. For
measuring the agreement we used the Jaccard coefficient.

Figure 1 shows the resulting application categories. Many
of the respondents mentioned web-based commercial-quality
3D games such as those available on modern desktop class
machines or consoles. Client hardware found on even small

6213



Chart 1

Games
Peer-to-Peer and  

Social
Desktop like

Data processing, analysis; 
productivity

Audio and Video

Visualization
Augmented reality; voice, 
gesture, user recognition

respondents

0% 10% 20% 30%

Figure 1. Future web application categories, as identified by respondents

form factor devices such as phones and tablets is rapidly
becoming more powerful. In addition, APIs such as Canvas
[4], Pointer lock [7] and touch enabling APIs [5] are being
standardized and many recent versions of major browsers
already support them. In particular, the Canvas element allows
for fine-grained control over drawing and is a key enabler
for cross-platform graphics in the browser without any third-
party plugins. The performance of drawing operations on
Canvas objects has also received considerable attention and has
improved dramatically over browser generations. The WebGL
API [11] allows executing shaders on client GPUs - a feature
that has traditionally only been available to native games.
Finally, the cross-platform portability and access-anywhere
model of web applications means that these games can reach a
wider audience. This leads us to expect HTML5 game engines
to rapidly evolve from simple 2D views, primitive physics and
gameplay to 3D or isometric 3D views, realistic physics [2]
and game AI.

Games have traditionally been important drivers of evolution
in consumer hardware. Modern native game engines make
extensive use of parallel hardware to deliver quality gameplay
experiences. For example, they use the increasingly sophisti-
cated GPUs for realistic rendering and physics computations,
they use multiple cores and vector instructions extensively
for task level and SIMD parallelism. However, these platform
capabilities are not available to web-based games engines
today as browser engines do not expose parallel hardware to
JavaScript programs (with the exception of shader programs
written in WebGL). We argue that this restriction implies
that web-based game applications will deliver lower quality
user experiences unless there are programming models that
appropriately expose the full spectrum of hardware parallelism
to web applications in a fashion that preserves safety and
programmability.

20% of the respondents have mentioned peer-to-peer and
social applications, supporting that the current trend towards a
more social web will continue.

Almost 20% of the respondents only mentioned desktop-
like applications. While this is not a category per se, we have
included this response to highlight this general trend. The
other common responses to this question are related to audio

bo
ttl

en
ec

k

resource loading
DOM manipulation

Canvas (read/write images)
WebGL interaction
number crunching

styling (CSS)

respondents

0% 20% 40% 60% 80% 100%

is a bottleneck so, so... not an issue

Figure 2. Performance bottlenecks importance as scaled by respondents

and video processing, data visualization, data analysis and
rich productivity suites, voice and gesture recognition, and
augmented reality.

Overall, the answers indicate that a majority of our respon-
dents expect future applications to be more computationally
intensive, real-time, and interactive.

2.2. Performance bottlenecks in current web applications
With the increasing richness and functionality embedded into

web applications, especially real-time interactive applications,
understanding typical performance bottlenecks are important
considerations for developers as well as engine implementors.
For example, the rapid evolution of many aspects of JIT engines
in major browsers is being driven by understanding bottlenecks
in commonly used programs or benchmark suites.

Our survey asked the respondents to categorize each of
several components as ”not an issue”, ”so, so...”, or ”is a
bottleneck”. The aggregated responses are shown in Figure 2.

Confirming the common complaint in the JavaScript com-
munity, 53% and 48% of respondents mentioned that resource
loading and DOM manipulation (e.g., inserting or deleting
elements), respectively, are a bottleneck. Large resources
typically are images, videos and scripts that are either loaded
before or during execution of a JavaScript program. 29% of
respondents identified Canvas operations as a bottleneck.

21% of respondents consider that number crunching/math
computation is a bottleneck. While the percent may seem
low compared to the opinion on other operations, we see
it as significant in the context of current popular web sites,
which usually do not execute any computationally-intensive
algorithms. Another 40% of respondents do not dismiss number
crunching/math computation as an issue.

The performance bottleneck classification question was
followed by an open-ended question asking for any bottleneck
we might have missed. There were 17 responses to this
question. Five of them highlighted various aspects of layout
and styling, and two mentioned the fallbacks for old browsers.
The others mentioned diverse aspects like lack of tail recursion,
garbage collection, runtime optimization, low level audio APIs,
compression, and local storage.

2.3. Programming style
The programming style preferred by developers offers some

insights into what parallel programming model they may

6214



re
sp
on
de
nt
s

7%
13%
20%
27%
33%
40%

1 2 3 4 5

re
sp
on
de
nt
s

10%
20%
30%
40%
50%
60%

1 2 3 4 5

Figure 3. Programming style preference scale from Functional (1) to
Imperative (5)

consider to be more “natural” to use. For example, a key pattern
in (pure) functional style programming is functions that operate
on immutable data-structures and are effectively stateless. This
pattern is important in the context of parallel execution as
immutable shared state simplifies value synchronization and has
been used effectively in several parallel programming models
[18], [8], [22]. On the other hand, programmers who like
writing imperative style code may prefer task or thread-level
parallel primitives with explicit synchronization on mutable
state such as in languages such as C/C++ or Java.

Our survey asked developers which selection of language
features they used frequently and which ones they did not. The
results are summarized below.

a) Functional vs Imperative style: While JavaScript uses
the block structured syntax found in imperative languages
like C/C++, Java and Python, it also supports many features
commonly found in functional programming languages. For
example JavaScript supports first class functions and closures.

The question is asked in order to qualitatively understand the
style preferred by the respondents. We asked programmer to
rate their preference on a scale of 1-5 with 1 being a strongly
functional style and 5 being a strongly imperative style. The
results are summarized in Figure 3. 31% of respondents replied
they preferred to write code in a strongly functional style
and 5% said they preferred a more imperative style. 52% of
respondents also answered the “Why” follow-up question. Of
these, a majority of the respondents who answered ”1” (i.e.,
they strongly preferred a functional style) at the preference
question mentioned that they found functional code to be more
concise, readable, or understandable.

A few of the respondents who answered that they preferred
a more imperative style pointed to performance issues as one
of the reasons for their choice. An important consideration is
the lack of tail call optimization in JavaScript which makes ex-
pressing iteration as recursion inefficient. Indeed ECMAScript
6, the next version of the JavaScript language standard includes
support for tail call optimization to accommodate programming
styles that are qualitatively more functional in nature.

Finally, a few of the respondents leaning towards more
functional code, and a majority of those leaning towards
imperative code, mentioned their background in a particular
programming style as the reason for their choice.

b) High-level Array operators vs for-loops:
JavaScript Arrays have builtin operators such as map,
forEach, and every. For example, the map method takes as

argument a callback function, invokes it for each element in the
Array in order and constructs a new Array out of the results
of the callback. In addition to the pure JavaScript method,
frameworks such as Prototype also include methods such as
map on their own data types.

This question attempts to understand whether, why and when
developers prefer to use these operators instead of iterating
over the elements of the Array using a loop. Developers’
preference can help determine the best way to make parallelism
available. If developers prefer explicit loops, parallelism could
be exposed through a loop annotation (akin to the parallel

OpenMP pragma). If developers prefer operators, parallelism
can be exposed though a special collection API, like the Parallel
JavaScript proposal [23].

Of the respondents who answered this question, 74% said
they preferred using the builtin operators. The principle reason
given in the open-ended answer was that with the high-
level operators, programmer intent was easier to convey and
understand leading to better readability. Several respondents
also mentioned the composability benefits of using the operators
instead of explicit loops. Another common justification was
that the callback functions supplied to the operators provided
a scope for variables that is missing from explicit loops.

Several respondents who said they favored explicit loops
cited the performance gap as an important reason for their
choice. A few others mentioned that they preferred initially
using the high-level operators, profiling their program to see
if any bottlenecks were due to use of these constructs and
replacing them with loops.

2.4. Parallelism-inhibiting language use
c) Use of global variables: Global variables are common

in JavaScript programs, despite being considered bad program-
ming practice. They also make parallelization mode difficult
and error-prone as they can generate race conditions. We asked
developers the open-ended question “What would be a scenario
where using global variables helps?” and got 105 responses.
This question attempts to understand if and how our respondents
use them. 33 of the respondents mentioned emulating a form of
namespace or module system. Another common usage pattern
mentioned was to communicate values between different scripts
on the same page during execution and between the server
and client on page load. Several respondents answered that
they use global singleton for important data structures that are
accessed in several parts of the program.

In our case study (Sections 3 and 4), we have encountered
few instances of problematic use of global variables.

d) Polymorphism: JavaScript is dynamically typed and
both functions and variables can be polymorphic. A polymor-
phic variable can change its type during execution, e.g., we
can assign a string to a variable that has so far pointed to an
integer. While the flexibility can be useful in certain cases, it
can also hamper compiler optimizations that depend on the
variable’s type.

Richards et al. [29] analyzed a large corpus of real-world
JavaScript programs taken from the 100 most popular websites

6215



re
sp
on
de
nt
s

7%
13%
20%
27%
33%
40%

1 2 3 4 5

re
sp
on
de
nt
s

10%
20%
30%
40%
50%
60%

1 2 3 4 5

Figure 4. Preference scale for variables: from Monomorphic (1) to
Polymorphic (5)

according to Alexa. They found that 81% of the call sites
in these programs were monomorphic. Further, over 90% of
functions were non-variadic i.e., their arity was fixed.

Our survey asked the respondents to rate their JavaScript
programs on a scale of 1-5 with 1 presenting programs with
purely monomorphic variables and 5 being programs that
make extensive use of variable polymorphism. A summary
of the responses is shown in Figure 4. About 58% of the
respondents (98 out of 168) said the programs they write are
purely monomorphic for variables. In contrast just 1% (2 out of
168) answered that their code made extensive use of variable
polymorphism.

These results are similar to the findings of Richards et
al. [29] and indicate that a majority of JavaScript code is
written in a de facto statically-typed fashion which means that
modern JIT engines may be able to infer these types effectively
and produce performant code. This is especially important
for execution on parallel hardware platforms such as GPUs
where type dynamism is difficult to support efficiently. Even
in a multi-core setting, supporting type dynamism requires
thread-safe runtime structures and algorithms for handling
querying and updating types at runtime. Therefore the extent
of data and function polymorphism in JavaScript programs
significantly influences the space of programming models that
can be implemented in browser engines.

3. Case study methodology
The case study brings more insight into the programming

style and issues prevalent in the computationally-intensive parts
of emerging web applications. The survey gave us a general
idea of web developers’ preferences, and of emerging trends.
We now drill down, confirm some of the survey’s findings, and
take a step forward to answer the following research questions:

Q 1: How much latent data parallelism is available?
Q 2: What are the issues that may impede parallelization?

We first selected 12 web applications (shown in Table 1) by
searching for the most mature implementations of the various
trends identified by the survey respondents. The application
set is heterogenous, it covers all the identified trend categories
except the meta-category “desktop-like” and “Peer-to-Peer and
Social”. Each application is either a direct exponent of a trend
(e.g., D3.js for Visualization) or a component for applications
in a trend (e.g., Tear-able Cloth is a demo of cloth simulation,
an important feature for realistic 3D games).

For each web application, we determine whether it is
computationally intensive. If it is, we study the expensive

web server

browser

github.com

1: request

proxy

1: request 1: response

2: instrument

3: instrumented
response

4: exercise
app 

5: results

6: results

7: interpret
results

Figure 5. JS-CERES instrumentation and reporting process

computations using a combination of automated analysis and
manual inspection. Thus, for each application:
1) We measure the processor time spent by the application

(using the Gecko profiler [6]), and the time spent specifi-
cally in loops (using very lightweight instrumentation of
JavaScript code).

2) We profile the application again using slightly heavier
instrumentation that gives us statistical information about
the runtime and trip count, i.e., number of iterations, of each
loop in the program. Using this information, we identify
the computationally-intensive loops.

3) We inspect each computationally intensive loop to deter-
mine whether it can be run in parallel and what could
hamper or prevent parallelization. To ease the process, we
run the web application again, this time instrumented to
give detailed information about memory access patterns.

4) We interpret and summarize the results.
In order to identify the computationally-intensive loops and

understand their behavior, we have developed JS-CERES, a
profiling and runtime dependence analysis tool. It is imple-
mented as a proxy server sitting between the browser and
the web server. The proxy instruments JavaScript code on
its way from the web server to the browser. On finishing the
analysis, the browser sends the results back to the proxy, which
then uploads them to github.com in a human-readable format.
Our tool has on overlap in purpose to Jalangi [30], a general-
purpose framework for writing dynamic analyses for JavaScript.
Jalangi was not publicized at the time we developed JS-CERES.
Furthermore, as we will see further, our specialized tool has a
staged profiling and dependence analysis approach aiming to
minimize the performance impact on the measured execution.

Fig. 5 illustrates the JS-CERES analysis process. It involves
the following steps:

6216



Table 1
Case study - web applications

Name/URL Category/Description

HAAR.js / github.com/foo123/HAAR.js User recognition / face recognition (Viola-Jones)
Tear-able Cloth / lonely-pixel.com/lab/cloth Games / cloth physics simulation (Verlet integration)
CamanJS / camanjs.com Audio and Video / image manipulation library
fluidSim / nerget.com/fluidSim Games / fluid dynamics simulation (Navier-Stokes)
Harmony / mrdoob.com/projects/harmony Audio and Video / Drawing application
Ace / ace.c9.io Productivity / code editor used by the Cloud9 IDE
MyScript / webdemo.visionobjects.com User recognition / handwriting recognition application
Raytracing / gist.github.com/jwagner/422755 Games / real-time raytracing demo
Normal Mapping / http://29a.ch/experiments Games / normal mapping
sigma.js / sigmajs.org Visualization / GEXF rendering
processing.js / processingjs.org Visualization / interactive spiral visual effect
D3.js / d3js.org Visualization / interactive azimuthal projection map

1) The browser requests a document from the web server,
passing through the proxy. The web server generates the
requested document and sends it back, and the proxy
intercepts it.

2) If the document is either HTML or JavaScript, the proxy
transforms any encountered JavaScript code, adding instru-
mentation for profiling and dependence analysis.

3) The proxy sends the instrumented document back to the
browser, fulfilling the request.

4) The user interacts with the web application to exercise any
computationally-intensive code, while the instrumentation
gathers and summarizes the results.

5) The user asks the web application to send back the results
by clicking a special button overlaid on top of the interface
by the instrumentation engine. In response, the browser
sends the results of the analysis to the web server. The
request is intercepted by the proxy.

6) The proxy analyzes the results and transforms them to
a human readable format. It then pairs the results to the
original documents, and saves them by committing to a
local git repository. Finally, the proxy pushes the results
to github.com.

7) We analyze the results. github.com is used as it provides
both version tracking and a convenient way to link result
reports to source code.

JS-CERES has three instrumentation modes: lightweight
profiling, loop profiling, and dependence. Each mode is meant
to aid one of the aforementioned steps taken when analyzing
each web application. The three modes are separated in order
to minimize the bias due to instrumentation overhead.

3.1. Lightweight profiling
In this mode, the tool only measures two scalar values: the

total time from the start of the application, and the total runtime
spent in all the loops in the program. JS-CERES adds before
and after each loop code that increments and, respectively,
decrements a counter that represents the number of open loops
in the program. When encountering a loop and the counter is
0, a separate variable remembers a timestamp. When exiting a
loop brings the counter to 0, the difference between the current
timestamp and the last remembered timestamp is added to a
global variable that holds the total time spent in loops. The

timestamps are taken using the new JavaScript high resolution
timer [3]. We observed that this setup has no discernible impact
on the runtime of the apps we analyzed.

We couple this instrumentation mode with using the Gecko
profiler [6] within Firefox to also measure the amount of time
the processor is active. We were surprised to find that the
active time reported by Gecko is often lower than the time
spent in loops measured by JS-CERES. We believe there are two
main reasons for this anomaly. First, the Gecko profiler is only
sampling the computation. As the sampling occurs at function
level (for performance reasons), a long running computation
within a single function may be seen as inactive time. Second,
if there is any blocking code within the loop or the OS or
Firefox decides to suspend the thread, JS-CERES continues to
count the time as part of the loop. We tried to minimize this
effect by not having any other expensive processes active on
the machine when profiling.

We run the experiments on a quad-core Intel Core i7 at
2.6 GHz (3720QM) with 16 GB of RAM. Running the same
experiments on a less performant platform (e.g., mobile) would
likely further increase the effect of performance bottlenecks.

3.2. Loop profiling
In this mode, JS-CERES instruments the program to compute,

for each syntactic loop: the number of times it is encountered,
the total, average, and variance of its running time, and the
total, average, and variance of its trip count. To compute this
information, JS-CERES adds the following instrumentation:
• each loop is represented by an object in a global map
• before each loop, a trip counter is set to 0 and a timestamp

is recorded
• before each iteration, the trip counter is incremented
• after each loop, the trip count and the loop’s running time

are added to the running totals, and variance is updated
using Welford’s online algorithm [32].

This instrumentation mode has only minimal discernible
impact on the running time of the applications.

3.3. Dependence analysis
In this mode, JS-CERES instruments the program to gather

information about the memory access patterns within specific
loops. As this type of instrumentation has a very high overhead,

6217



JS-CERES allows the programmer to focus on a specific loop.
The tool then reports all problematic memory accesses that
happen, at runtime, within the focused loop. The following
memory access types are reported, as they can break a
dependency when parallelizing the loop:
a) writes to variables that are declared outside the context

of the current loop iteration. As JavaScript variables
have function scope, it includes all variables that are
syntactically inside the loop. As expected, it excludes
variables from functions called from within the loop. The
writes generate output dependencies (write-after-write) [12]
between different iterations.

b) writes to fields of objects that are initialized outside
the context of the current loop iteration. The accesses
generate output dependencies between iterations, and may
be involved in anti-dependencies (write-after-read).

c) reads of fields which have been initialized in the loop,
but in a different iteration. The accesses generate flow
dependencies (read-after-write).

An in-depth description of the runtime dependence analysis
is presented in the technical report of this work [27].

4. Case study results
We now discuss the results in the context of the original

research questions.

4.1. How much latent data parallelism is available?
First, we approximate an upper bound for latent data

parallelism by using the runtime spent in loops as a proxy. The
results of the experiment (described in Sec. 3.1) are summarized
in Table 2. The second column shows the total time each
application is active, i.e. the time before starting the application
and the time results are gathered. The third column shows the
amount of time the CPU was active, as reported by the Gecko
profiler. The last column shows the total amount of time spent
in loops, are measured by JS-CERES’s instrumentation. The
fact the total amount of active time is sometimes lower than the
time spent in loops is an artifact of our methodology (see Sec.
3.1). Still, we believe the overall conclusion stands: at least half
of the applications can be considered computationally intensive
(i.e. the CPU is active for a large portion of their running
time) and, for most of these, a large part of the computation
occurs in loops. Not all loops are parallelizable, but the fact
that looping is a significant part of the computation puts a high
upper bound to the amount of latent data parallelism.

Next, we identify the most computationally-intensive loop
nests (loops that nested within a single top-level loop) in each
of the applications and check whether their computation is
inherently data-parallel. It’s not necessarily that this parallelism
can be exploited in the near future as there are still technological
challenges with current web browser technology (e.g. the DOM
is not concurrent). It does, however, improve the previous (Table
2) approximation of latent-parallelism upper bound.

For each application, we inspect the top loop nests that,
together, make up at least two thirds of the application’s time
spent in loops. Altogether, we inspect 22 loop nests across

Table 2
Case study - running time.

Running time (s)

Name Total Active In Loops

HAAR.js 8 2 0.44
Tear-able Cloth 14 7 9
CamanJS 40 23 17
fluidSim 22 17 12
Harmony 41 0.36 0.28
Ace 30 0.4 0.4
MyScript 12 0.33 0.15
Realtime Raytracing 62 19 26
Normal Mapping 25 6 4
sigma.js 32 9 8
processing.js 21 12 2
D3.js 18 5 4

the 12 subject web applications. Table 3 shows a summary
of our findings. Each row represents an inspected loop nest.
The runtime part of the table shows the percentage of the total
looping time spent in the particular loop nest, the number of
times the loop nest has been encountered at runtime (instances),
and the average and standard deviation for the trip count of
the outer loop of the nest (across all instances of the said loop
nest). In a few cases the parallelizable loop is not the outer
loop of a nest. In these cases we consider the loop nest formed
without some of the outer layers, and report the results for this
inner loop nest instead.

About three fourths of the inspected loop nests have some
intrinsic parallelism, i.e. do not have dependencies that we think
could not be broken. Also, in most cases, the trip count and
granularity is high enough for some form of data-parallelism to
be potentially useful. Still, exploiting this parallelism may not
be easy. In many cases it would require a combination of code
changes and browsers with efficient parallel data structures and
concurrent DOM and Canvas implementations.

4.2. What are the issues that may impede parallelization?

We found that JavaScript poses the traditional issues to
parallelization, while also raising new ones that stem from
its evolving, dynamic, and web-centric nature. In addition to
finding latent parallelism and matching the parallel computation
to the hardware, a JavaScript programmer also needs to
get around concurrent updates to the non-concurrent DOM,
concurrent reads and writes of global memory, and polymorphic
variables. Columns 5-8 in Table 3 summarize these issues and
how often we encountered them in the inspected loops.

Control-flow divergence: Control-flow is diverging when
the execution takes different paths depending on a dynamically
evaluated predicate. Such behavior is usually generated by
branching statements and loops with data-dependent number
of iterations.

Control-flow divergence can make different threads execute
different instructions, so it is an issue when trying to run parallel
code on SIMD architectures. Several techniques have been
proposed to allow control-flow divergence while minimizing
the performance impact [15], [17], [13], [33], [34], [21], [26],

6218



Table 3
Case study - detailed inspection of loop nests

runtime control flow DOM breaking parallelization
name % instructions trips/instruction divergence access dependencies difficulty

HAAR.js 38 10 31±23 little no easy easy
36 50k 15±15 yes no easy medium

Tear. Cloth 80 1077 1581 little no medium medium

CamanJS
72 536 90k little no easy easy
15 16 90k±300 little no easy easy

7 12 360k little no easy easy
fluidSim 90 40k 168±147 none no easy easy

Harmony
33 207 50 none yes easy very hard
32 498 50 none yes easy very hard
15 123 5±3 none yes easy very hard

Ace 42 125 1±0.1 yes yes very hard very hard
22 123 1±0.2 yes yes very hard very hard

MyScript 70 511 4±2 yes yes very hard very hard
Raytracing 98 772 120 yes no very easy easy
Norm. Map. 99 64 65k little no very easy easy
sigma.js 68 2070 191±27 little yes very hard very hard

22 638 196±21 yes yes very hard very hard
processing.js 25 54.6k 4±37 no no easy medium

22 54.6k 4±37 no no easy medium
16 54.5k 2 yes yes medium very hard
13 54.6k 4±37 no no easy medium

D3.js 99 51 156±57 yes yes hard hard

[25]. Still, the overhead is still much higher than that exhibited
on CPUs.

Column 5 shows an assessment of the amount of control-flow
divergence. We found several cases where the computation
would, algorithmically, be very hard to adapt for SIMD
parallelism:
• Each iteration in the second loop of HAAR.js searches

through a tree, making the iterations uneven.
• The loops in Ace only execute roughly one iteration on

average. The first loop executes a rendering method until
there are no more cascading changes.

• The Raytracing algorithm has variable-depth recursion.
• For MyScript, the only client-side expensive loop executes

only a few iterations, computing the length of line segments.
• Some loops (in sigma.js and processing.js) execute very

few iterations.
In most other cases (labeled as “little”) the iterations

contain branching statements but their effect is local and they
only contain a few instructions. Thus, we expect they can
be transformed to versions that use instructions guarded by
predicates or select instructions instead of branches without
a major performance impact. Finally, a few nests contain
recursive functions or inner loops with variable data-dependent
bounds. These loop nests may will pose additional challenges
when attempting SIMD parallelization.

DOM accesses: Column 6 shows that half of the loop
nests access the DOM. This is problematic as, although there
is some research in this area [24], [31], no major browser
currently supports concurrent accesses to the DOM.

Accesses to shared memory: Code within loops may access
shared (i.e., not local to the loop) memory locations. These
accesses may generate dependencies between loop iterations
(see Sec.3.3). These dependencies need to be broken in some

way in order to correctly parallelize the loop. Column 7 shows
our assessment of how hard it would be for a programmer to
break those dependencies for each loop nest. We made this
assessment by manually inspecting access patterns within each
loop nests with the help of our dependence analysis tool. The
dependence analysis tool was particularly helpful in identifying
flow dependencies but it also failed to scale to some of the
case studies.

Most loop nests make complex accesses to variables from
global memory, and all loops at least read global memory.
The good news is that in more than two thirds of the loop
nests the write accesses have a well-defined pattern that allows
parallelism.

Polymorphic variables: We have asked programmers about
their use of polymorphic variables (see Sec. 2.4.4d). We now
confirm the results in the context of the computationally-
intensive loops in the case study by manually inspecting the
code for polymorphic variable accesses. We consider a variable
polymorphic if the property accesses or method invocations
made through dereferencing this variable assume objects of
different types. E.g., we consider a variable polymorphic if
at one point in the program it is a number, while at another
point it is invoked as a function. We do not consider a variable
polymorphic if it changes between defined, undefined, and null.
Our manual inspection did not reveal any polymorphic variables
within the computationally-intensive loops.

Finally, column 8 of Table 3 shows our estimate of how
easy it would be to parallelize the loop nests, by considering
both how easy it would be to break dependencies and current
browser limitations (i.e. non-concurrent DOM and Canvas).
Considering Amdahl’s law, the upper bound for speedup is
greater than 3⇥ for 5 of the 12 applications when only counting
easy to parallelize loops. On the other end of the spectrum we

6219



think it would be hard or very hard to obtain any significant
speedup for 5 of the 12 applications.

5. Implications
Our study has several practical implications. We organize

them based on the community for which they are relevant.

5.1. Library developers and researchers
Using the survey data from Section 2.3, the preference for

iterating through functional-style operators is perhaps intuitively
unsurprising given that JavaScript as a whole is a high-level
language with higher order functions, and extensive usage of
closures in practice. What is more surprising is that program-
mers often prefer these high-level operators even at the cost
of some performance. This means that any proposed parallel
programming model should present a sufficiently high-level
interface that abstracts away concurrency and synchronization
issues, hardware features and scheduling. Thus, libraries can
take a functional approach to exposing data parallelism (like
RiverTrail did) instead of an annotative one (e.g., OpenMP
pragma directives).

Looking at the case study data from Table 3, the non-
concurrent DOM is a bottleneck to exploiting data parallelism,
but not the biggest issue. Most of the loop nests that were not
parallelizable due to DOM operations were not that compute-
intensive to begin with.

The complexity of global memory accesses seen in the case
studies implies that library developers will need to provide easy
ways of making arbitrary variables available to the parallel
kernels. Ideally, the memory management would be part of the
JIT compilation.

5.2. Builders of web browser engines
Runtime polymorphic variables typically have some per-

formance cost since the JavaScript JIT engine must resolve
the type of such variables by leaving the fast JIT-ed code
path and entering the browser runtime. Modern browser
engines implement sophisticated type inferencing [20] and
speculation to reduce these overheads. On the other hand
our survey indicates that many developers write programs
that are predominantly monomorphic with respect to variables
(see Fig. 4). Our case studies of compute-intensive JavaScript
programs also support this observation. This suggests that
compute-intensive programs would benefit from aggressive
type speculation and other mechanisms that provide a fast
path for code that is completely monomorphic and can be
statically analyzed. This is especially important in the context of
parallelism since running polymorphic code in parallel usually
requires browser runtimes be made thread safe.

Our survey indicates that many developers prefer using high-
level operators such as map or foreach instead of explicit
loops. Firstly this suggests that browser engines need to have
efficient implementations of these operators. Secondly, many
of these higher level constructs such as map, reduce etc., are
particularly suited for specifying parallelism as they capture the
underlying parallelism-enabling structure of the computation.
This approach is taken by Parallel Javascript [23].

5.3. Tool developers and researchers
Our experience analyzing the case study applications shows

that a standard profiler is insufficient for identifying parallelism
opportunities as it does not provide any information about the
loops. A profiler with integrated loop information retrieval can
help - along the lines of our prototype or, more advanced, the
modeling tools in mature IDEs like Microsoft Visual Studio
(for C#) or Intel Parallel Studio (for C++).

If parallelized, most of the loop nests we analyzed would
have races. Most of these races would be fixable but the user
would need to be aware of them and devise a strategy around
them. As speculative parallelization gains ground for JavaScript,
it does not only need to abort when it fails to run a loop in
parallel, but also report to the developer the reason for aborting.
Furthermore, once the detailed reason for aborting is identified,
the developer would need to transform the code significantly
to solve the issue, part of which may be automated.

Our case studies show that all loops that are compute-
intensive are written in a imperative style. Refactoring tools [19]
that can transform imperative iteration into functional style
could make these loops amenable to parallelism via libraries
with parallel operators such as RiverTrail[23].

5.4. JavaScript developers
As the workloads for emerging web application trends

indicate parallelism would be useful, and considering the
WebCL [10] and Parallel JavaScript [23] proposals, JavaScript
developers should expect to have access to parallel constructs
in the next few years.

In this context, a clean design and implementation (e.g.,
avoiding global variables) not only helps with maintainability,
but reduces hard-to-find parallelism-inhibiting dependencies.

Also, it may be that developers should trust their instincts: if
they like functional code more (as the data in Fig. 3 indicates),
they may be better of writing it, despite fears of loss of
performance. JavaScript engines tend to adapt quickly to the
usage scenarios that are frequent in practice. And they may
get parallelism as an added bonus in the future.

5.5. Educators
While our survey shows that developers are not adverse to

functional-style operators for iteration in principle, the case
study applications contain very few loops that use functional
operators. This suggests that, while developers understand and
like the concept, they are using explicit for loops out of habit.
Early-on education about alternate ways of iteration may help.
The other reason for this anomaly may be that developers are
wary that functional operators are slower than explicit loops.

6. Related work
We are aware of two related studies in the context of

JavaScript. Fortuna et al. [16] study a set of widely used web-
sites and come to the conclusion that current web workloads
offer significant potential for parallelization, with projected
speedups ranging from a factor of 2.19 to 45.46 and averaging
around a factor of 8.91. While this suggest that there is use for

6220



parallelism, the authors also found that the majority of speedups
stem from parallel execution of independent tasks rather than
independent loop iterations. This suggests that the web would
benefit less from data parallelism oriented approaches like
WebCL and Parallel JavaScript and that a lightweigth task-
based approach might be more appropriate.

Another study on JavaScript [29], looking at its dynamic
behavior, comes to the conclusion that web-sites indeed make
significant use of dynamic features: Many websites use eval to
generate code on the fly, object properties change throughout
their lifetime, including properties being deleted or their
types changing, and a significant number of call sites are
polymorphic. Such dynamic behavior not only makes static
analysis of JavaScript hard but also renders execution on more
restricted parallel hardware like SIMD extensions or even GPUs
challenging. Thus, it gives another reason to believe that data
parallelism and the web do not pair well.

However, as mentioned earlier, both studies focus on websites
that mostly use a page-centric approach and have only low
compute density. While these are valid studies to understand
the status quo, they are not well suited to judge behavior of
new and emerging application-centric web usages, which is
the focus of this work.

7. Conclusion
With the proliferation of desktop and mobile operating

systems, the web is increasingly seen as a cross-platform
solution for delivering applications. In our survey, when
asked about emerging trends in web applications, JavaScript
developers mostly identified kinds of applications that, not long
ago, were only available as native desktop applications.

But this transitioning comes with a challenge: native desktop
applications had to resort to multi and many-core parallelism
for performance. Should the web follow suit? If so, how hard
will it be?

To answer these questions we conducted a survey among
JavaScript developers asking them about their use of JavaScript
language-features that may impede parallelism. Furthermore,
we did a case study looking at the computationally-intensive
loop nests in 12 web applications. While JavaScript is highly
dynamic, we found that developers seldom use language fea-
tures that impede parallelism. An important current limitation
is that browsers have non-concurrent implementations of basic
data structures (e.g., the DOM). Much of the compute-intensive
code we inspected is written in a style typical of non-dynamic
imperative languages. This means that many of the lessons
learned by the programming community while parallelizing
desktop applications will translate to the web.

Acknowledgments
We thank the anonymous reviewers for their comments and

suggestions, and Semih Okur, Codruta Girlea, Mihai Codoban,
and Caius Brindescu for their feedback on early drafts of
this work. This research is partly funded through NSF CCF-
1439957, CCF-1442157, and CCF-1553741 grants, a SEIF
award from Microsoft, and a gift grant from Intel.

References
[1] Alexa. http://www.alexa.com.
[2] Epic citadel. http://www.unrealengine.com/html5.
[3] High Resolution Time. http://www.w3.org/TR/hr-time/.
[4] Html canvas. http://www.w3.org/TR/2dcontext2/.
[5] HTML Touch Events API. http://www.w3.org/TR/touch-events/.
[6] Mozilla Gecko Profiler. https://developer.mozilla.org/en-

US/docs/Performance/Profiling with the Built-in Profiler.
[7] Pointer lock. http://www.w3.org/TR/pointerlock/.
[8] Rust language. http://www.rust-lang.org.
[9] Web Workers. http://www.w3.org/TR/workers/.

[10] webCL. http://www.khronos.org/webcl/.
[11] webgl. http://www.khronos.org/webgl/.
[12] Randy Allen and Ken Kennedy. Automatic translation of fortran programs

to vector form. TOPLAS ’87.
[13] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D.

Gropp, and Wen-mei W. Hwu. An adaptive performance modeling tool
for gpu architectures. In PPoPP ’10.

[14] Daniela S Cruzes and Tore Dyba. Recommended steps for thematic
synthesis in software engineering. In ESEM ’11.

[15] Reza Farivar, Harshit Kharbanda, Shivaram Venkataraman, and Roy H
Campbell. An algorithm for fast edit distance computation on gpus. In
InPar 2012.

[16] Emily Fortuna, Owen Anderson, Luis Ceze, and Susan Eggers. A limit
study of javascript parallelism. In IISWC ’10.

[17] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt.
Dynamic warp formation and scheduling for efficient gpu control flow.
In MICRO ’97.

[18] Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield,
and Joe Duffy. Uniqueness and reference immutability for safe parallelism.
In OOPSLA ’12.

[19] Alex Gyori, Lyle Franklin, Danny Dig, and Jan Lahoda. Crossing the
gap from imperative to functional programming through refactoring. In
FSE ’13.

[20] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference
for JavaScript. In PLDI ’12.

[21] Tianyi David Han and Tarek S. Abdelrahman. Reducing branch
divergence in gpu programs. In GPGPU ’11.

[22] Stephan Herhut, Richard L Hudson, Tatiana Shpeisman, and Jaswanth
Sreeram. Parallel programming for the web. In HotPar ’12.

[23] Stephan Herhut, Richard L Hudson, Tatiana Shpeisman, and Jaswanth
Sreeram. River Trail: A path to parallelism in JavaScript. In OOPSLA

’13.
[24] Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste Asanović,

and Rastislav Bodı́k. Parallelizing the web browser. In HotPar ’09.
[25] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic warp

subdivision for integrated branch and memory divergence tolerance.
In ISCA ’10.

[26] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips. Gpu computing ’08.

[27] Cosmin Radoi, Stephan Herhut, Jaswanth Sreeram, and Danny Dig.
Are web applications ready for parallelism? Technical Report
http://hdl.handle.net/2142/72643, University of Illinois, 2014.

[28] Cosmin Radoi, Stephan Herhut, Jaswanth Sreeram, and Danny Dig. Are
web applications ready for parallelism? In PPoPP ’15, pages 289–290,
New York, NY, USA, 2015. ACM.

[29] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of javascript programs. In PLDI ’10.

[30] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A selective record-replay and dynamic analysis framework for
javascript. In FSE ’13.

[31] Christopher A Vick, Bin Wang, and Mehrdad Mohammad H Reshadi.
Concurrent parsing and processing of HTML and JAVASCRIPT. US
Patent 20,120,290,924.

[32] BP Welford. Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420, 1962.

[33] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, and Xipeng Shen. Streamlining
GPU applications on the fly: Thread divergence elimination through
runtime thread-data remapping. In ICS ’10.

[34] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen.
On-the-fly elimination of dynamic irregularities for GPU computing. In
ASPLOS’11.

6221


