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Abstract. Researchers use file-based Version Control System (VCS) as
the primary source of code evolution data. VCSs are widely used by
developers, thus, researchers get easy access to historical data of many
projects. Although it is convenient, research based on VCS data is incom-
plete and imprecise. Moreover, answering questions that correlate code
changes with other activities (e.g., test runs, refactoring) is impossible.

Our tool, CodingTracker, non-intrusively records fine-grained and di-
verse data during code development. CodingTracker collected data from
24 developers: 1,652 hours of development, 23,002 committed files, and
314,085 testcase runs.

This allows us to answer: How much code evolution data is not stored
in VCS? How much do developers intersperse refactorings and edits in the
same commit? How frequently do developers fix failing tests by changing
the test itself? How many changes are committed to VCS without being
tested? What is the temporal and spacial locality of changes?

1 Introduction

Any successful software system continuously evolves in response to ever-changing
requirements [35]. Developers regularly add new or adjust existing features, fix
bugs, tune performance, etc. Software evolution research extracts the code evo-
lution information from the system’s historical data. The traditional source of
this historical data is a file-based Version Control System (VCS).

File-based VCSs are very popular among developers (e.g., Git [20], SVN [47],
CVS [7]). Therefore, software evolution researchers [1, 10, 11, 13, 14, 16–19, 21,
22, 24, 27, 28, 31, 34, 40, 45, 46, 49–51, 54] use VCS to easily access the historical
data of many software systems. Although convenient, using VCS code evolution
data for software evolution research is inadequate.

First, it is incomplete. A single VCS commit may contain hours or even days
of code development. During this period, a developer may change the same code
fragment multiple times, for example, tuning its performance, or fixing a bug.
Therefore, there is a chance that a subsequent code change would override an
earlier change, thus shadowing it. Since a shadowed change is not present in the
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code, it is not present in the snapshot committed to a Version Control System
(VCS). Therefore, code evolution research performed on the snapshots stored in
the VCS (like in [16–18]) does not account for shadowed code changes. Ignoring
shadowed changes could significantly limit the accuracy of tools that try to infer
the intent of code changes (e.g., infer refactorings [10, 11, 21, 49, 50], infer bug
fixes [23, 30, 32, 33, 39, 53]).

Second, VCS data is imprecise. A single VCS commit may contain several
overlapping changes to the same program entity. For example, a refactored pro-
gram entity could also be edited in the same commit. This overlap makes it
harder to infer the intent of code changes.

Third, answering research questions that correlate code changes with other
development activities (e.g., test runs, refactoring) is impossible. VCS is limited
to code changes, and does not capture many kinds of other developer actions:
running the application or the tests, invoking automated refactorings from the
IDE, etc. This severely limits the ability to study the code development process.
How often do developers commit changes that are untested? How often do they
fix assertions in the failing tests rather then fixing the system under test?

Code evolution research studies how the code is changed. So, it is natural to
make changes be first-class citizens [42, 44] and leverage the capabilities of an In-
tegrated Development Environment (IDE) to capture code changes online rather
than trying to infer them post-mortem from the snapshots stored in VCS. We
developed a tool, CodingTracker, an Eclipse plug-in that unintrusively collects
the fine-grained data about code evolution of Java programs. In particular, Cod-

ingTracker records every code edit performed by a developer. It also records
many other developer actions, for example, invocations of automated refactor-
ings, tests and application runs, interactions with VCS, etc. The collected data
is so precise that it enables us to reproduce the state of the underlying code at
any point in time. To represent the raw code edits collected by CodingTracker

uniformly and consistently, we implemented an algorithm that infers changes as
Abstract Syntax Tree (AST) node operations. Section 2.1 presents more details
about our choice of the unit of code change.

We deployed CodingTracker to collect evolution data for 24 developers work-
ing in their natural settings. So far, we have collected data for 1,652 hours of
development, which involve 2,000 commits comprising 23,002 committed files,
and 9,639 test session runs involving 314,085 testcase runs.

The collected data enables us to answer five research questions:

Q1: How much code evolution data is not stored in VCS?
Q2: How much do developers intersperse refactorings and edits in the same

commit?
Q3: How frequently do developers fix failing tests by changing the test itself?
Q4: How many changes are committed to VCS without being tested?
Q5: What is the temporal and spacial locality of changes?

We found that 37% of code changes are shadowed by other changes, and are not
stored in VCS. Thus, VCS-based code evolution research is incomplete. Second,
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programmers intersperse different kinds of changes in the same commit. For
example, 46% of refactored program entities are also edited in the same com-
mit. This overlap makes the VCS-based research imprecise. The data collected
by CodingTracker enabled us to answer research questions that could not be
answered using VCS data alone. The data reveals that 40% of test fixes in-
volve changes to the tests, which motivates the need for automated test fixing
tools [8, 9, 36]. In addition, 24% of changes committed to VCS are untested.
This shows the usefulness of continuous integration tools [2, 3, 25, 26]. Finally,
we found that 85% of changes to a method during an hour interval are clustered
within 15 minutes. This shows the importance of novel IDE user interfaces [4]
that allow developers to focus on a particular part of the system.

This paper makes the following major contributions:

1. The design of five questions about the reliability of VCS data in studying
code evolution. These five research questions have never been answered be-
fore.

2. A field study of 24 Java developers working in their natural environment.
To the best of our knowledge, this is the first study to present quantitative
evidence of the limitations of code evolution research based on VCS data.

3. CodingTracker, an Eclipse plug-in that collects a variety of code evolution
data online and a replayer that reconstructs the underlying code base at
any given point in time. CodingTracker is open source and available at
http://codingspectator.cs.illinois.edu.

4. A novel algorithm that infers AST node operations from low level code edits.

2 Research Methodology

To answer our research questions, we conducted a user study on 24 participants.
We recruited 13 Computer Science graduate students and senior undergraduate
summer interns who worked on a variety of research projects from six research
labs at the University of Illinois at Urbana-Champaign. We also recruited 11
programmers who worked on open source projects in different domains, including
marketing, banking, business process management, and database management.
Table 1 shows the programming experience of our participants1. In the course of
our study, we collected code evolution data for 1,652 hours of code development
with a mean distribution of 69 hours per programmer and a standard deviation
of 62.

To collect code evolution data, we asked each participant to install Coding-

Tracker plug-in in his/her Eclipse IDE. During the study, CodingTracker

recorded a variety of evolution data at several levels ranging from individual
code edits up to the high-level events like automated refactoring invocations, test
runs, and interactions with Version Control System (VCS). CodingTracker em-
ployed CodingSpectator’s infrastructure [48] to regularly upload the collected

1 Note that only 22 out of 24 participants filled the survey and specified their pro-
gramming experience.
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Table 1. Programming experience of the participants

Number of participants Programming Experience (years)

1 1 - 2
4 2 - 5
11 5 - 10
6 > 10

data to our centralized repository. Section 4 presents more details about the data
CodingTracker collects.

2.1 Unit of Code Change

Our code evolution questions require measuring the number of code changes.
Therefore, we need to define a unit of code change. Individual code edits collected
by CodingTracker represent code changing actions of a developer in the most
precise way, but they are too irregular to serve as a unit of change in our code
evolution analysis. A single code edit could represent typing a single character
or inserting a whole class declaration. Moreover, even if several code edits are
equivalent in the number of affected characters, they could have a totally different
impact on the underlying code depending on whether they represent editing
a comment, typing a long name of a single variable, or adding several short
statements.

We define a unit of code change as an atomic operation on an Abstract Syntax
Tree (AST) node: add, delete, or update, where add adds a node to AST, delete
removes a node from AST, and update changes a property of an existing AST
node (e.g., name of a variable). We represent a move operation, which moves a
child node from one parent to another one in an AST, as two consequent AST
node operations: delete and add.

To infer AST node operations from the collected raw edits, we apply our
novel inferencing algorithm described in Section 5. Our research questions re-
quire establishing how AST node operations correlate with different developer’s
actions, e.g., whether an AST operation is a result of a refactoring, whether AST
operations are followed by a commit or preceded by tests, etc. Therefore, Coding-

Tracker inserts the inferred AST node operations in the original event sequence
right after the subsequence of code edits that produce them. We answer every
research question by processing the output of the inferencing algorithm with the
question-specific analyzer.

3 Research Questions

3.1 How Much Code Evolution Data Is Not Stored in VCS?

A single VCS commit may contain hours or days worth of development. During
this period, a developer may change the same code fragment multiple times,
with the latter changes shadowing the former changes.
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Figure 1 presents a code evolution scenario. The developer checks out the
latest revision of the code shown in Figure 1(a) and then applies two refac-
torings and performs several code changes to a single method, adjust. First,
the developer renames the method and its local variable, base, giving them
intention-revealing names. Next, to improve the precision of the calculation, the
developer changes the type of the computed value and the production factor,
unit, from int to float and assigns a more precise value to unit. Last, the de-
veloper decides that the value of unit should be even more precise, and changes
it again. Finally, the developer checks the code shown in Figure 1(d) into the
VCS.

Fig. 1. A code evolution scenario that illustrates a shadowed code change and an
overlap of refactorings with other code changes

Note that in the above scenario, the developer changes the value assigned
to unit twice, and the second change shadows the first one. The committed
snapshot shown in Figure 1(d) does not reflect the fact that the value assigned
to unit was gradually refined in several steps, and thus, some code evolution
information is lost.

To quantify the extent of code evolution data losses in VCS snapshots, we
calculate how many code changes never make it to VCS. We compute the total
number of changes that happen in between each two commits of a source code
file and the number of changes that are shadowed, and thus, do not reach VCS.
We get the number of reaching changes by subtracting the number of shadowed
changes from the total number of changes. To recall, a unit of code change is an
add, delete, or update operation on an AST node. For any two operations on the
same AST node, the second operation always shadows the first one. Additionally,
if an AST node is both added and eventually deleted before being committed,
then all operations that affect this node are shadowed, since no data about this
node reaches the commit.

Figure 2 shows the ratio of reaching and shadowed changes for our partici-
pants. Note that we recorded interactions with VCS only for 15 participants who
used Eclipse-based VCS clients. A separate bar presents the data for each such
participant. The last bar presents the aggregated result. Overall, we recorded
2,000 commits comprising 23,002 committed files.

The results in Figure 2 demonstrate that on average, 37% of changes are
shadowed and do not reach VCS. To further understand the nature of shadowed
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Fig. 2. Ratio of reaching and shadowed changes

code changes, we counted separately those shadowed changes that are comment-
ing/uncommenting parts of the code or undoing some previous changes. If a
change is both commenting/uncommenting and undoing, then it is counted as
commenting/uncommenting. Figure 3 presents the results. Overall, 78% of shad-
owed code changes are authentic changes, i.e., they represent actual changes
rather than playing with the existing code by commenting/uncommenting it or
undoing some previous changes.

Fig. 3. Composition of shadowed changes. The fifth bar is missing, since there are no
shadowed changes for this participant.

Our results reveal that more than a third of all changes do not reach VCS
and the vast majority of these lost changes are authentic. Thus, a code evolution
analysis based on snapshots from VCS misses a significant fraction of important
code changes, which could lead to imprecise results. Further research is required
to investigate the extent of this imprecision.
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3.2 How Much Do Developers Intersperse Refactorings and Edits
in the Same Commit?

Many tools [10, 11, 21, 29, 49, 50] compare a program’s snapshots stored in VCS to
infer the refactorings applied to it. As the first step, such a tool employs
different similarity measures to match the refactored program entities in the two
compared snapshots. Next, the tool uses the difference between the two matched
program entities as an indicator of the kind of the applied refactoring. For ex-
ample, two methods with different names but with similar code statements could
serve as an evidence of a Rename Method refactoring [11]. If a refactored program
entity is additionally changed in the same commit, both matching it across com-
mits and deciding on the kind of refactoring applied to it become harder. Such
code evolution scenarios undermine the accuracyof the snapshot-based refactoring
inference tools.

Figure 1 shows an example of such a scenario. It starts with two refactorings,
Rename Method and Rename Local Variable. After applying these refactorings,
the developer continues to change the refactored entities – the body and the
return type of the renamed method; the type and the initializer of the renamed
local variable. Consequently, versions (a) and (d) in Figure 1 have so little in
common that even a human being would have a hard time identifying the refac-
tored program entities across commits.

To quantify how frequently refactorings and edits overlap, we calculate the
number of refactored program entities that are also edited in the same commit.
Our calculations employ the data collected by CodingTracker for ten partici-
pants who both used Eclipse-based VCS clients and performed automated refac-
torings. Note that we do not consider manual refactorings since they can not be
directly captured by our data collector, but rather need to be inferred from the
collected data as an additional, non-trivial step.

First, we look at a single kind of program entities – methods. Figure 4 shows
the ratio of those methods that are refactored only once before being commit-
ted (pure refactored methods) and those methods that are both refactored and
edited (e.g., refactored more than once or refactored and edited manually) be-
fore being committed to VCS. We consider a method refactored/edited if either
its declaration or any program entity in its body are affected by an automated
refactoring/manual edit. Figure 4 shows that on average, 58% of methods are
both refactored and additionally changed before reaching VCS.

Next, we refine our analysis to handle individual program entities. To detect
whether two refactorings or a refactoring and a manual edit overlap, we introduce
the notion of a cluster of program entities. For each program entity, we compute
its cluster as a collection of closely related program entities. A cluster of a pro-
gram entity includes this entity, all its descendants, its enclosing statement, and
all descendants of its enclosing statement, except the enclosing statement’s body
and the body’s descendants. We consider a program entity refactored/edited if
any of the entities of its cluster is affected by an automated refactoring/manual
edit. Figure 5 demonstrates that on average, 46% of program entities are both
refactored and additionally changed in the same commit.
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Fig. 4. Ratio of purely refactored methods and those that are both refactored and
additionally changed before being committed to VCS

Fig. 5. Ratio of purely refactored program entities and those that are both refactored
and additionally changed before reaching a commit

Our results indicate that most of the time, refactorings are tightly intermixed
with other refactorings or manual edits before reaching VCS. This could severely
undermine the effectiveness of refactoring inference tools that are based on VCS
snapshots [10, 11, 21, 29, 49, 50]. Our findings serve as a strong motivation to
build a refactoring inference tool based on the precise, fine-grained data collected
by CodingTracker and compare its accuracy against the existing snapshot-
based tools.

3.3 How Frequently Do Developers Fix Failing Tests by Changing
the Test Itself?

In response to ever-changing requirements, developers continuously add new
features or adjust existing features of an application, which could cause some
unit tests to fail. A test that fails due to the new functionality is considered
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broken since making it a passing test requires fixing the test itself rather than the
application under test. Developers either have to fix the broken tests manually
or use recent tools that can fix them automatically [8, 9, 36].

Figure 6 presents a unit test of a parser. This test checks that the parser
produces a specific number of elements for a given input. A new requirement to
the system introduces an additional parsing rule. Implementing this new feature,
a developer breaks this test, because the number of elements in the same input
has changed. Thus, the developer needs to update the broken test accordingly.

Fig. 6. A unit test of a parser that checks the total number of elements in the parser’s
result

We justify the need for the automated test fixing tools by showing how of-
ten such scenarios happen in practice, i.e., how many failing tests are fixed by
changing the test itself. We look for these scenarios in the data collected for
15 participants who ran JUnit tests as part of their code development process.
Overall, we recorded 9,639 test session runs, involving 314,085 testcase runs. We
track a failing test from the first run it fails until the run it passes successfully.
Each such scenario is counted as a test fix. If a developer changes the test’s
package during this time span, we consider that fixing this failing test involves
changing it.

Figure 7 shows the ratio of test fixes involving and not involving changes to
the tests. Our results show that on average, 40% of test fixes involve changes
to the tests. Another observation is that every participant has some failing
tests, whose fix requires changing them. Hence, a tool like ReAssert [9] could
have benefited all of the participants, potentially helping to fix more than one
third of all failing tests. Nevertheless, only a designated study would show
how much of the required changes to the failing tests could be automated by
ReAssert.

3.4 How Many Changes Are Committed to VCS without Being
Tested?

Committing untested code is considered a bad practice. A developer who
commits untested code risks to break the build and consequently, cause the
disruption of the development process. To prevent such scenarios and catch bro-
ken builds early, the industry adopted continuous integration tools (e.g., Apache
Gump [2], Bamboo [3], Hudson [25], and Jenkins [26]), which build and test every
commit before integrating it into the trunk. Only those commits that successfully
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Fig. 7. Ratio of test fixes involving and not involving changes to the tests

pass all the tests are merged into the trunk. Nevertheless, these tools are not
pervasive yet. In particular, the majority of the projects that we studied did not
employ any continuous integration tools. Therefore, we would like to quantita-
tively assess the necessity of such tools.

To assess the number of untested, potentially build-breaking changes that
are committed to VCS, we measure how much developers change their code in
between tests and commits. Our measurements employ the data collected for
ten participants who both used Eclipse-based VCS clients and ran JUnit tests.
We consider each two consecutive commits of a source code file. If there are no
test runs in between these two commits, we disregard this pair of commits2.
Otherwise, we count the total number of code changes that happen in between
these two commits. Also, we count all code changes since the last test run until
the subsequent commit as untested changes. Subtracting the untested changes
from the total number of changes in between the two commits, we get the tested
changes.

Figure 8 shows the ratio of tested and untested changes that reach VCS. Al-
though the number of untested changes that reach a commit varies widely across
the participants, every participant committed at least some untested changes.
Overall, 24% of changes committed to VCS are untested. Figure 9 shows that
97% of the untested changes are authentic, i.e., we discard undos and comments.

Note that even a small number of code changes may introduce a bug, and
thus, break a build (unless the code is committed to a temporary branch). Be-
sides, even a single developer with a habit to commit untested changes into the
trunk may disrupt the development process of the entire team. Thus, our re-
sults confirm the usefulness of continuous integration tools, which ensure that
all commits merged into the trunk are fully tested.

2 We are conservative in calculating the amount of untested changes in order to avoid
skewing our results with some corner case scenarios, e.g., when a project does not
have automated unit tests at all (although this is problematic as well).
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Fig. 8. Ratio of tested and untested code changes that reach VCS

Fig. 9. Composition of untested changes that reach VCS

3.5 What Is the Temporal and Spacial Locality of Changes?

Simplifying the development process and increasing the productivity of a de-
veloper are among the major goals of an Integrated Development Environment
(IDE). The better an IDE supports code changing behavior of a developer, the
easier it is for him/her to develop the code. Code Bubbles [4] is an example of a
state-of-the-art IDE with a completely reworked User Interface (UI). The novel
UI enables a developer to concentrate on individual parts of an application. For
example, a developer could pick one or more related methods that he/she is
currently reviewing or editing and focus on them only.

To detect whether developers indeed focus their editing efforts on a particular
method at any given point in time, we calculate the distribution of method-
level code changes over time. We perform this calculation for all 24 participants
who took part in our study, since it does not depend on any particular activity
of the participant (e.g., interactions with VCS or test runs). We employ three
sliding time windows spanning 15, 30, and 60 minutes. For every code change
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that happens in a particular method, we count the number of changes to this
method within each sliding window, i.e., the number of changes 7.5 minutes, 15
minutes, and 30 minutes before and after the given change. Then, we sum the
results for all code changes of each method. Finally, we add up all these sums
for all the methods.

Figure 10 shows the ratio of method-level code changes for each of our three
sliding time windows. On average, 85% of changes to a method during an hour
interval are clustered within 15 minutes. Our results demonstrate that developers
tend to concentrate edits to a particular method in a relatively small interval of
time. The implication of this finding is that IDEs should provide visualizations
of the code such that a programmer can focus on one method at a time.

Fig. 10. Ratio of method-level code changes for three sliding time windows: 15, 30,
and 60 minutes

4 Collecting Code Evolution Data

To collect code evolution data for our research questions, we developed an Eclipse
plug-in, CodingTracker. CodingTracker registers 38 different kinds of code
evolution events that are grouped in ten categories. Table 2 presents the com-
plete list of the registered events. CodingTracker records the detailed informa-
tion about each registered event, including the timestamp at which the event
is triggered. For example, for a performed/undone/redone text edit, Coding-

Tracker records the offset of the edit in the edited document, the removed text
(if any), and the added text (if any). In fact, the recorded information is so
detailed and precise that CodingTracker’s replayer uses it to reconstruct the
state of the evolving code at any point in time. Note that we need to replay
the recorded data to reproduce the actions of a developer since our AST node
operations inferencing algorithm is applied offline.

CodingTracker’s replayer is an Eclipse View that is displayed alongside other
Views of an Eclipse workbench, thus enabling a user to see the results of the
replayed events in the same Eclipse instance. The replayer allows to load a
recorded sequence of events, browse it, hide events of the kinds that a user is
not interested in, and replay the sequence at any desired pace.
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Table 2. The complete list of events recorded by CodingTracker

Category Event Description

Text editing

Perform/Undo/Redo Perform/Undo/Redo a text edit
text edit in a Java editor

Perform/Undo/Redo Perform/Undo/Redo a text edit
compare editor text edit in a compare editor

File editing

Edit file Start editing a file in a Java editor

Edit unsynchronized file
Start editing a file in a Java editor

that is not synchronized with
the underlying resource

New file
A file is about to be edited

for the first time

Refresh file
Refresh a file in a Java editor to synch-
ronize it with the underlying resource

Save file Save file in a Java editor
Close file Close file in a Java editor

Compare
editors

Open compare editor Open a new compare editor
Save compare editor Save a compare editor
Close compare editor Close a compare editor

Refactorings
Start refactoring Perform/Undo/Redo a refactoring
Finish refactoring A refactoring is completed

Resource
manipulation

Create resource Create a new resource (e.g., file)
Copy resource Copy a resource to a different location
Move resource Move a resource to a different location
Delete resource Delete a resource

Externally modify Modify a resource from outside of Eclipse
resource (e.g., using a different text editor)

Interactions CVS/SVN update file Update a file from VCS
with CVS/SVN commit file Commit a file to VCS

Version Control CVS/SVN initial
Commit a file to VCS for the first time

System (VCS) commit file

JUnit test runs

Launch test session A test session is about to be started
Start test session Start a test session
Finish test session A test session is completed
Start test case Start a test case
Finish test case A test case is completed

Start up events
Launch application Run/Debug the developed application

Start Eclipse Start an instance of Eclipse

Workspace Change workspace
Change global workspace options

and options
Project Options Change project options Change options of a refactored project

Project Change referencing Change the list of projects that
References projects reference a refactored project
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To ensure that the recorded data is correct, CodingTracker records redun-
dant information for some events. This additional data is used to check that
the reconstructed state of the code matches the original one. For example, for
every text edit, CodingTracker records the removed text (if any) rather than
just the length of the removed text, which would be sufficient to replay the
event. For CVS/SVN commits, CodingTracker records the whole snapshot of
the committed file. While replaying text edits and CVS/SVN commits, Coding-

Tracker checks that the edited document indeed contains the removed text and
the committed file matches its captured snapshot3.

Eclipse creates a refactoring descriptor for every performed automated refac-
toring. Refactoring descriptors are designed to capture sufficient information to
enable replaying of the corresponding refactorings. Nevertheless, we found that
some descriptors do not store important refactoring configuration options and
thus, can not be used to reliably replay the corresponding refactorings. For exam-
ple, the descriptor of Extract Method refactoring does not capture information
about the extracted method’s parameters [5]. Therefore, besides recording refac-
toring descriptors of the performed/undone/redone automated Eclipse refactor-
ings, CodingTracker records the refactorings’ effects on the underlying code.
A refactoring’s effects are events triggered by the execution of this refactoring –
usually, one or more events from Text editing, File editing, and Resource manip-
ulation categories presented in Table 2. In a sequence of recorded events, effects
of an automated refactoring are located in between its Start refactoring and
Finish refactoring events. To ensure robust replaying, CodingTracker replays
the recorded refactorings’ effects rather than their descriptors.

5 AST Node Operations Inferencing Algorithm

Our inferencing algorithm converts the raw text edits collected by Coding-

Tracker into operations on the corresponding AST nodes. First, the algorithm
assigns a unique ID to every AST node in the old AST. Next, the algorithm con-
siders the effect of each text edit on the position of the node in the new AST in
order to match the old and the new AST nodes. The matched nodes in the new
AST get their IDs from their counterparts in the old AST. If the content of a
matched AST node has changed, the algorithm generates the corresponding up-
date operation. The algorithm generates a delete operation for every unmatched
node in the old AST and an add operation for every unmatched node in the new
AST, assigning it a unique ID.

Given an edited document, a single text edit is fully described by a 3-tuple
(<offset>, <removed text length>, <added text>), where <offset> is the
offset of the edit in the edited document, <removed text length> is the length
of the text that is removed at the specified offset, and <added text> is the text
that is added at the specified offset. If <removed text length> is 0, the edit

3 Note that replaying CVS/SVN commits does not involve any interactions with Ver-
sion Control System (VCS), but rather checks the correctness of the replaying pro-
cess.
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does not remove any text. If <added text> is empty, the edit does not add any
text. If <removed text length> is not 0 and <added text> is not empty, the
edit replaces the removed text with the <added text> in the edited document.

In the following, we describe several heuristics that improve the precision of
our inferencing algorithm. Then, we explain our algorithm in more details and
demonstrate it using an example.

Gluing. Figure 11(a) illustrates an example of text edits produced by a de-
veloper, who renamed variable i1 to j2 by first removing the old name using
backspace and then typing in the new name. This single operation of changing
a variable’s name involves four distinct text edits that are recorded by Cod-

ingTracker. At the same time, all these text edits are so closely related to
each other that they can be “glued” together into a single text edit with the
same effect on the underlying text, which is shown in Figure 11(b). We call such
“glued” text edits coherent text edits and use them instead of the original text
edits recorded by CodingTracker in our AST node operations inferencing al-
gorithm. This drastically reduces the number of inferred AST node operations
and makes them better represent the intentions of a developer.

(a) A sequence of text edits recorded by CodingTracker for renaming variable i1 to j2.

(b) A coherent text edit that “glues” together all text edits shown in Figure 11(a).

Fig. 11. An example of changing a variable’s name represented both as individual
text edits recorded by CodingTracker (Figure 11(a)) and as a single coherent text edit
(Figure 11(b)). Each box shows the content of the edited document. The offset of every
document’s character is shown under each box. The 3-tuples describing text edits are
shown above the arrows that connect boxes.

To decide whether a text edit e2 should be “glued” to a preceding text edit
e1, we use the following heuristics:

1. e2 should immediately follow e1, i.e., there are no other events in between
these two text edits.

2. e2 should continue the text change of e1, i.e., text edit e2 should start at
the offset at which e1 stopped.

Note that in the above heuristics e1 can be either a text edit recorded by Cod-

ingTracker or a coherent text edit, produced from “gluing” several preceding
text edits.
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Linked Edits. Eclipse offers a code editing feature that allows simultaneous
editing of a program entity in all its bindings that are present in the opened
document. Each binding of the edited entity becomes an edit box and every
text edit in a single edit box is immediately reflected in all other boxes as well.
This feature is often used to rename program entities, in particular to name
extracted methods. Since text edits in a single edit box are intermixed with
the corresponding edits in other edit boxes, to apply our “gluing” heuristics
presented above, we treat edits in each box disjointly, constructing a separate
coherent text edit for every edit box. When a boxed edit is over, the constructed
coherent text edits are processed one by one to infer the corresponding AST
node operations.

Jumping over Unparsable Code. Our AST node operations inferencing al-
gorithm processes coherent text edits as soon as they are constructed, except the
cases when text edits introduce parse errors in the underlying code. Parse errors
might confuse the parser that creates ASTs for our algorithm, which could lead
to imprecise inferencing results. Therefore, when a text edit breaks the AST, we
postpone the inferencing until the AST is well-formed again. Such postponing
causes accumulation of several coherent text edits, which are processed by our
inferencing algorithm together. Figure 12 shows an example of a code editing sce-
nario that requires inference postponing. A developer inserts brackets around the
body of an if statement. The first coherent text edit adds an opening bracket,
breaking the structure of the AST, while the second coherent text edit adds a
closing bracket, bringing the AST back to a well-formed state. The inference is
postponed until the second edit fixes the AST. Note that sometimes we have to
apply the inferencing algorithm even when the underlying program’s AST is still
broken, for example, when a developer closes the editor before fixing the AST.
This could lead to some imprecision in the inferred AST node operations, but
we believe that such scenarios are very rare in practice. In particular, our per-
sonal experience of replaying the recorded sequences shows that the code rarely
remains in the unparsable state for long time.

Fig. 12. An example of two code edits: the first edit breaks the AST of the edited
program, while the second edit brings the AST back to a well-formed state

Pseudocode. Figure 13 shows an overview of our AST node operations infer-
encing algorithm. The algorithm takes as input the list of coherent text edits,
cteList, the AST of the edited code before the text edits, oldAST, and the AST
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after the edits, newAST. The output of the algorithm is an unordered collection
of the inferred AST node operations.

The inferencing algorithm is applied as soon as a new coherent text edit is
completed, unless the underlying code is unparsable at that point, in which case
the inferencing is postponed until the code becomes parsable again. As long as
the code remains parsable, cteList contains a single coherent text edit. If the
code becomes unparsable for some time, cteList will contain the accumulated
coherent text edits that bring the code back into the parsable state. Note that
newAST represents the code that is a result of the edits in cteList applied to
the code represented by oldAST. Since replaying the edits in cteList is not a
part of the inferencing algorithm, we supply both oldAST and newAST as the
algorithm’s inputs.

Each inferred operation captures the persistent ID of the affected AST node.
Persistent IDs uniquely identify AST nodes in an application throughout its
evolution. Note that given an AST, a node can be identified by its position in
this AST. A node’s position in an AST is the traversal path to this node from
the root of the AST. Since the position of an AST node may change with the
changes to its AST, we assign a unique persistent ID to every AST node and keep
the mapping from positions to persistent IDs, updating it accordingly whenever
a node’s position is changed as a result of code changes.

Most of the time, edits in cteList affect only a small part of the code’s AST.
Therefore, the first step of the algorithm (lines 3 – 5) establishes the root of the
changed subtree – a common covering node that is present in both the old and
the new ASTs and completely encloses the edits in cteList. To find a common
covering node, we first look for a local covering node in oldAST and a local
covering node in newAST. These local covering nodes are the innermost nodes
that fully encompass the edits in cteList. The common part of the traversal paths
to the local covering nodes from the roots of their ASTs represents the position
of the common covering node (assigned to coveringPosition in line 3).

Next, every descendant node of the common covering node in the old AST is
checked against the edits in cteList (lines 6 – 18). An edit does not affect a node
if the code that this node represents is either completely before the edited code
fragment or completely after it. If a node’s code is completely before the edited
code fragment, the edit does not impact the node’s offset. Otherwise, the edit
shifts the node’s offset with <added text length> - <removed text length>.
These shifts are calculated by getEditOffset and accumulated in deltaOffset (line
12). If no edits affect a node, the algorithm looks for its matching node in the
new AST (line 15). Every matched pair of nodes is added to matchedNodes.

In the following step (lines 19 – 25), the inferencing algorithm matches yet
unmatched nodes that have the same AST node types and the same position in
the old and the new ASTs. Finally, the algorithm creates an update operation
for every matched node whose content has changed (lines 26 – 30), a delete
operation for every unmatched node in the old AST (lines 31 – 33), and an add
operation for every unmatched node in the new AST (lines 34 – 36).
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input: oldAST, newAST, cteList // the list of coherent text edits
output: astNodeOperations
1 astNodeOperations = �;
2 matchedNodes = �;
3 coveringPosition = getCommonCoveringNodePosition(oldAST, newAST, cteList);
4 oldCoveringNode = getNode(oldAST, coveringPosition);
5 newCoveringNode = getNode(newAST, coveringPosition);
6 foreach (oldNode ∈ getDescendants(oldCoveringNode)) { // matches outliers
7 deltaOffset = 0;
8 foreach (textEdit ∈ cteList) {
9 if (affects(textEdit, oldNode, deltaOffset) {
10 continue foreach line6;
11 } else {
12 deltaOffset += getEditOffset(textEdit, oldNode, deltaOffset);
13 }
14 }
15 if (∃ newNode ∈ getDescendants(newCoveringNode) :

getOffset(oldNode) + deltaOffset == getOffset(newNode) &&
haveSameASTNodeTypes(oldNode, newNode)) {

16 matchedNodes ∪= (oldNode, newNode);
17 }
18 }
19 foreach (oldNode ∈ getDescendants(oldCoveringNode) :

oldNode /∈ getOldNodes(matchedNodes)) { // matches same-position nodes
20 oldPosition = getNodePositionInAST(oldNode, oldAST );
21 newNode = getNode(newAST, oldPosition);
22 if (∃ newNode ∈ getDescendants(newCoveringNode) :

haveSameASTNodeTypes(oldNode, newNode) {
23 matchedNodes ∪= (oldNode, newNode);
24 }
25 }
26 foreach ((oldNode, newNode) ∈ matchedNodes) {
27 if (getText(oldNode) �= getText(newNode)) {
28 astNodeOperations ∪= getUpdateOperation(oldNode, newNode);
29 }
30 }
31 foreach (oldNode ∈ getDescendants(oldCoveringNode) :

oldNode /∈ getOldNodes(matchedNodes)) {
32 astNodeOperations ∪= getDeleteOperation(oldNode);
33 }
34 foreach (newNode ∈ getDescendants(newCoveringNode) :

newNode /∈ getNewNodes(matchedNodes)) {
35 astNodeOperations ∪= getAddOperation(newNode);
36 }

Fig. 13. Overview of our AST node operations inferencing algorithm
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Example. Figure 14 illustrates a coherent text edit that changes a variable
declaration. Figure 15 demonstrates the inferred AST node operations for this
edit. Connected ovals represent the nodes of the old and the new ASTs. Dashed
arrows represent the inferred operations. Labels above the arrows indicate the
kind of the corresponding operations.

Fig. 14. An example of a text edit that changes a variable declaration

Fig. 15. The inferred AST node operations for the text edit in Figure 14

6 Threats to Validity

There are several factors that might negatively impact the precision of our re-
sults. This section discusses the potential influence and possible mitigation for
each of these factors.

6.1 Experimental Setup

Issues like privacy, confidentiality, and lack of trust in the reliability of research
tools made it difficult to recruit programmers to participate in our study. There-
fore, we were unable to study a larger sample of experienced programmers.

Many factors affect programmers’ practices. For example, programmers may
write code, refactor, test, and commit differently in different phases of software
development, e.g., before and after a release. As another example, practices of
programmers who work in teams might be different than those who are the sole
authors of their programs. Due to the uncontrolled nature of our study, it is not
clear how such factors affect our results.
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Our participants have used CodingTracker for different periods of time (See
Section 2). Therefore, those participants who used CodingTracker more influ-
enced our results more.

Our results are limited to programmers who use Eclipse for Java programming
because CodingTracker is an Eclipse plug-in that captures data about the
evolution of Java code. However, we expect our results to generalize to similar
programming environments.

6.2 AST Node Operations Inferencing Algorithm

To decide whether two individual text edits should be “glued” together, we
apply certain heuristics, which are sufficient in most cases. Nevertheless, as any
heuristics, they can not cover all possible scenarios. As a result, our algorithm
might infer multiple operations for a single change intended by a developer (e.g.,
a single rename of a variable). This artificial increase in the number of AST
node operations can potentially skew the results for each question. However,
such corner case scenarios are infrequent and thus, their influence on our results
is negligible.

The current implementation of our AST node operations inferencing algorithm
does not support the move operation, but rather represents the corresponding
action as delete followed by add. Consequently, the number of AST node oper-
ations that our data analyzers operate on might be inflated. At the same time,
all our results are computed as ratios of the number of operations, which sub-
stantially diminishes the effect of this inflation.

Although our AST node operations inferencing algorithm does not expect that
the underlying code is always parsable, it produces the most precise results for
a particular subsequence of text edits when there is at least one preceding and
one succeeding state, in which the code is parsable. The algorithm uses these
parsable states to “jump over the gap” of intermediate unparsable states, if any.
A scenario without a preceding and succeeding parsable states could cause the
algorithm to produce some noise in the form of spurious or missing AST node
operations. Such scenarios are very uncommon and hence, their impact on our
results is minimal.

7 Related Work

7.1 Empirical Studies on Source Code Evolution

Early work on source code evolution relied on the information stored in VCS as
the primary source of data. The lack of fine-grained data constrained researchers
to concentrate mostly on extracting high-level metrics of software evolution, e.g.,
number of lines changed, number of classes, etc.

Eick et al. [13] identified specific indicators for code decay by conducting a
study on a large (∼100,000,000 LOC) real time software for telephone systems.
These indicators were based on a combination of metrics such as number of
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lines changed, commit size, number of files affected by a commit, duration of a
change, and the number of developers contributing to a file.

Xing et al. [51] analyzed the evolution of design in object-oriented software
by reconstructing the differences between snapshots of software releases at the
UML level using their tool, UMLDiff. UML level changes capture information
at the class level and can be used to study how classes, fields, and methods have
changed from each version. From these differences, they tried to identify distinct
patterns in the software evolution cycles.

Gall et al. [16] studied the logical dependencies and change patterns in a prod-
uct family of Telecommunication Switching Systems by analyzing 20 punctuated
software releases over two years. They decomposed the system into modules and
used their CAESAR technique to analyze how the structure and software metrics
of these modules evolved through different releases.

For these kinds of analyses, the data contained in traditional VCS is ade-
quate. However, for more interesting analyses that require program comprehen-
sion, relying only on high-level information from VCS is insufficient. In partic-
ular, Robbes in his PhD thesis [41, p.70] shows the difference in the precision
of code evolution analysis tools applied to fine-grained data vs. coarse-grained
VCS snapshots. This client level comparison is complementary to our work, in
which we quantify the extent of data loss and imprecision in VCS snapshots
independently of a particular client tool.

7.2 Tools for Reconstructing Program Changes

To provide greater insight into source code evolution, researchers have proposed
tools to reconstruct high-level source code changes (e.g., operations on AST
nodes, refactorings, restructurings, etc.) from the coarse-grained data supplied
through VCS snapshots.

Fluri et al. [15] proposed an algorithm to extract fine-grained changes from
two snapshots of a source code file and implemented this algorithm in a tool,
ChangeDistiller. ChangeDistiller represents the difference between two versions
of a file as a sequence of atomic operations on the corresponding AST nodes.
We also express changes as AST node operations, but our novel algorithm infers
them directly from the fine-grained changes produced by a developer rather than
from snapshots stored in VCS.

Kim et al. [29] proposed summarizing the structural changes between different
versions of a source code file as high-level change rules. Change rules provide a
cohesive description of related changes beyond deletion, addition, and removal
of a textual element. Based on this idea, they created a tool that could automat-
ically infer those change rules and present them as concise and understandable
transformations to the programmer.

Weissgerber et al. [50] and Dig et al. [11] proposed tools for identifying refac-
torings between two different version of a source code. Such tools help developers
gain better insights into the high-level transformations that occurred between
different versions of a program.
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All these tools detect structural changes in the evolving code using VCS snap-
shots. However, the results of our field study presented in Section 3 show that
VCS snapshots provide incomplete and imprecise data, thus compromising the
accuracy of these tools. The accuracy of such tools could be greatly improved by
working on the fine-grained changes provided through a change-based software
tool such as CodingTracker.

7.3 Tools for Fine-Grained Analysis of Code Evolution

Robbes et al. [42, 44] proposed to make a change the first-class citizen and cap-
ture it directly from an IDE as soon as it happens. They developed a tool, Spy-
Ware [43], that implements these ideas. SpyWare gets notified by the Smalltalk
compiler in the Squeak IDE whenever the AST of the underlying program
changes. SpyWare records the captured AST modification events as operations
on the corresponding AST nodes. Also, SpyWare records automated refactoring
invocation events.

Although our work is inspired by similar ideas, our tool, CodingTracker,
significantly differs from SpyWare. CodingTracker captures raw fine-grained
code edits rather than a compiler’s AST modification events. The recorded data
is so precise that CodingTracker is able to replay it in order to reproduce the
exact state of the evolving code at any point in time. Also, CodingTracker

implements a novel AST node operations inferencing algorithm that does not
expect the underlying code to be compilable or even fully parsable. Besides,
CodingTracker captures a variety of evolution data that does not represent
changes to the code, e.g., interactions with VCS, application and test runs, etc.

Sharon et al. [12] implemented EclipsEye, porting some ideas behind SpyWare
to Eclipse IDE. Similarly to SpyWare, EclipsEye gets notified by Eclipse about
AST changes in the edited application, but these notifications are limited to the
high-level AST nodes starting from field and method declarations and up.

Omori and Maruyama [37, 38] developed a similar fine-grained operation
recorder and replayer for the Eclipse IDE. In contrast to CodingTracker, their
tool does not infer AST node operations but rather associates code edits with
AST nodes, to which they might belong. Besides, CodingTracker captures more
operations such as those that do not affect code like runs of programs and
tests and version control system operations. The additional events that Cod-

ingTracker captures enabled us to study the test evolution patterns and the
degree of loss of code evolution information in version control systems.

Yoon et al. [52] developed a tool, Fluorite, that records low-level events in
Eclipse IDE. Fluorite captures sufficiently precise fine-grained data to reproduce
the snapshots of the edited files. But the purpose of Fluorite is to study code
editing patterns rather than software evolution in general. Therefore, Fluorite
does not infer AST node operations from the collected raw data. Also, it does
not capture such important evolution data as interactions with VCS, test runs,
or effects of automated refactorings.

Chan et al. [6] proposed to conduct empirical studies on code evolution em-
ploying fine-grained revision history. They produce fine-grained revision history
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of an application by capturing the snapshots of its files at every save and compi-
lation action. Although such a history contains more detailed information about
an application’s code evolution than a common VCS, it still suffers from the
limitations specific to snapshot-based approaches, in particular, the irregular in-
tervals between the snapshots and the need to reconstruct the low level changes
from the pairs of consecutive snapshots.

8 Conclusions

The primary source of data in code evolution research is the file-based Ver-
sion Control System (VCS). Our results show that although popular among
researchers, a file-based VCS provides data that is incomplete and imprecise.
Moreover, many interesting research questions that involve code changes and
other development activities (e.g., automated refactorings or test runs) require
evolution data that is not captured by VCS at all.

We conducted a field study using CodingTracker, our Eclipse plug-in, that
collects diverse evolution data. We analyzed the collected data and answered
five code evolution research questions. We found that 37% of code changes are
shadowed by other changes, and are not stored in VCS. Thus, VCS-based code
evolution research is incomplete. Second, programmers intersperse different kinds
of changes in the same commit. For example, 46% of refactored program entities
are also edited in the same commit. This overlap makes the VCS-based research
imprecise. The data collected by CodingTracker enabled us to answer research
questions that could not be answered using VCS data alone. In particular, we
discovered that 40% of test fixes involve changes to the tests, 24% of changes
committed to VCS are untested, and 85% of changes to a method during an
hour interval are clustered within 15 minutes.

These results confirm that more detailed data than what is stored in VCS is
needed to study software evolution accurately.
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